Deep-Water Sequences in Static and Dynamic Basin Margin Accommodation*

Martin Grecula¹, Liam Clarke², Andy Mayfield³, Kim Ong³, and Jennifer Stuart¹

Search and Discovery Article #11048 (2018)**
Posted February 5, 2018

*Adapted from oral presentation given at AAPG International Conference and Exhibition, London, England, October 15-18, 2017
**Datapages © 2018. Serial rights given by author. For all other rights contact author directly.

¹Shell International, London, United Kingdom (martin.grecula@shell.com)
²Shell International Exploration and Production, The Hague, Netherlands
³Shell Malaysia Exploration & Production, Kuala Lumpur, Malaysia

Abstract

Sedimentary sequences deposited in deep-water basins contain a variety of reservoir-prone units separated by fine-grained intervals. We have compared deep-water sequences from a post-rift passive margin Paleogene of the West of Shetlands, syn-deformational Miocene of the NW Borneo fold-thrust belt, and intra-cratonic Cretaceous clinoforms of the West Siberian basin to examine distribution of reservoirs and seals in the environments of different tectonic settings. On passive margins, transition to post-rift thermal subsidence is often associated with increased sand supply and smoothing of rift topography. An overall progradational trend is reflected by superposition of channels over lobes. There are commonly persistent point source feeder systems, controlled by the underlying structure. Due to efficient sand transport, the drape development may be limited and the effective seal is typically only developed at significant sea-level rise episodes, or due to changes in tectonic subsidence pattern. Sequences deposited in toe-set portions of clinoforms prograding into relatively shallow intra-cratonic basins experience limited lateral and downdip confinement, resulting in an overall progradation within and between sequences. The shelf edge often develops multiple feeder systems, which tend to alternate in supplying sand into deep water. As a result, autocyclic drapes related to lateral shift of deposition define more localized sequences, which partly overlap to stack into linear belts. In compressional settings, folding is initially subtle, mainly providing lateral confinement in tortuous corridors. Progradation and draping of the systems are commonly linked to sea-level change controlling sediment supply. Progressive linkage of structures creates more disconnected slope accommodation. The confining structures often grow near equilibrium with sedimentation rate, and a switch from ponding to bypass may happen repeatedly and in random order. Bypass and updip trapping of sediment is the key control in a development of drapes. Geometry and vertical stacking of deep-water sequences depends on whether the receiving accommodation is static or dynamically changing due to substrate deformation. The slope gradient variation controls relative proportion of channelized and sheet-like deposits. The drapes may result from autocyclic lateral shifts or from an allocyclic supply switch-offs, due to rejuvenation of updip topographic sills or a eustatic sea level rise.
References Cited

Deep-water sequences in static and dynamic basin margin accommodation

Martin Grecula¹, Liam Clarke², Andy Mayfield³, Kim Ong³, Jennifer Stuart¹

¹Shell International Ltd, London, UK, ²Shell International E&P, The Hague, Netherlands,
³Shell Malaysia E&P, Kuala Lumpur, Malaysia
Acknowledgements
Definitions & cautionary note

Reserves: Our use of the term "reserves" in this presentation means SEC proved oil and gas reserves.

Resources: Our use of the term "resources" in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers (SPE) 2P + 2C definitions. Discovered and prospective resources: Our use of the term "discovered and prospective resources" are consistent with SPE 2P + 2C + 2U definitions.

Organic: Our use of the term Organic includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Shales: Our use of the term "shales" refers to tight, shale and coal bed methane oil and gas acreage.

Underlying operating cost is defined as operating cost less identified items. A reconciliation can be found in the quarterly results announcement.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation "Shell", "Shell group" and "Royal Dutch Shell" are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words "we", "us" and "our" are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. "Subsidiaries", "Shell subsidiaries" and "Shell companies" as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as "joint ventures" and "joint operations" respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as "associates". The term "Shell interest" is used for convenience to indicate the direct and/ or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements.

Forward-looking statements are statements of future expectations that are based on management's current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management's expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as: "anticipate", "believe", "could", "estimate", "expect", "goals", "intend", "may", "objectives", "outlook", "plan", "probably", "project", "risks", "schedule", "seek", "should", "target", "will" and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell's products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. No assurance is provided that future dividend payments will match or exceed previous dividend payments. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell's Form 20-F for the year ended December 31, 2016 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward-looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.
Is there a distinctive architecture in DW sequences of different settings?

DW depositional sequences: genetically linked turbidite deposits draped by a significant shale of auto- or allocyclic origin (sediment supply or bypass related)

Controlling factors
- 4D character of slope accommodation: static or dynamic
- Slope profiles – active deformation, healing of inherited topography, graded

Compared parameters
- Geometry – size of depositional elements, width vs thickness (confinement)
- Architecture - proportion and stacking of channelized vs lobe elements

Implications
- Stratigraphic trapping potential
- Stacked pay potential
- Reservoir risk and volumetric prediction in partly or poorly imaged DW plays

[Image: Diagram showing various depositional elements and their architectural implications]
Examples of static and dynamic basin accommodation

Case study 1: West Siberia
- Intra-cratonic thermal sag basin
- Rapid progradation of clinoforms

Case study 2: West of Shetlands
- Passive margin with rejuvenated rift topography
- Healing of an ‘above-grade’ slope

Case study 3: NW Borneo
- Deep-water fold-thrust belt
- Evolution from basin floor to episodically deforming slope

Eustasy

Sediment supply

Subsidence/Uplift

STATIC to DYNAMIC
Meretoyakhinskiy block
West Siberian basin, Russia

An intra-cratonic sag basin with rapidly prograding clinoforms
Lower Cretaceous clinoforms

- Triassic rifting followed by a thermal sag. Only minor deformation subsequently.
- Max subsidence and sedimentation rates in the early Cretaceous (uplift and erosion of the basin margins).
- High progradation rate (mean of 61 km/My)
- Eustatic cycles - primary control on deposition.
- Basin depth: 300–1,200 m
- Grain size: fine – medium
- Wide shelf (10’s – 100’s km)
Sequence architecture & sand distribution

- Regressive wedges during both highstand and lowstand, with DW sand deposited in both HSS and ISS
- Toe-set sands commonly detached along steeper foresets (strat. trapping)
- Intra-formational seals also by draped ravinement
Basin-floor & slope turbidites

- Basal extensive basin-floor fans overlie composite sequence boundary
- Following sequences have less sandy toesets, but sand is present on the slope and at their shelf-edge
- Apparent pinch-outs/toplaps draped by mud-prone transgressive deposits
Lateral & vertical heterogeneity

- Sequences are represented in the toesets by turbidite fans (lobe complex sets) 80-120m thick
- Lobe complexes (50-60m thick) are passing up-slope to 20-30m thick channel belts
- Sand bodies are separated by 5-10m thick muddy drapes, with thickness increasing in the foresets
- Drapes are laterally persistent, acting as effective intraformational seals
- Slump facies observed in the core from the upper slope setting
Architectural evolution

- Initial wide channel belt evolves into multiple short lived slope channels with higher sinuosity
- Active channels alternate along the slope, but more than one is active at a time
- Lobe complexes overlap but exert little lateral confinement on their neighbours

Limited influence of currents on shallow (inner) subaqueous delta, increasing towards outer shelf. Waves might bring sediment to outer shelf. With straight shelf edge, shelf edge propagation dependent on sediment input at shoreline?

Assumed sediment input point north of model, resulting in higher shelf propagation in this area. Southward, only minor propagation due to limited sediment delivery. Island source/terraced area becomes preferred area of deposition at basin floor.

Reduced sed. supply to shelf edge (e.g. due to decrease in shelf accommodation).

Current strength and direction, sediment input, high sed. supply, maintained high sed. supply, southward shift in main dep. over time.

Achimov 2

Lobe complexes 8-12 km wide
Upper Achimov fan >20 km wide
Channels 0.3-0.6 km wide (widening downslope)
Sinuosity ~1.25-1.3 (peak mid-slope)
Greater Schiehallion area
Faroe-Shetlands basin, UK

Passive margin with inherited, episodically re-juvenated rift topography
Paleogene stratigraphy

- Major hinterland uplift triggers sand input into the basin
- Rift topography present long into thermal subsidence phase
- Basin accommodation progressively filled by deep-water deposits, but episodic deformation triggers slope gradient changes

Copyright of Shell International 13
AAG ICE 2017
October 2017
Schiehallion field located between a major underlying faulted horst and a transfer zone
- Syn-depositional E-W faulting occurred in response to their episodic movement
- Fault accommodation zones created corridors capable of confining turbidite fairways
- Initial Paleocene slope depocenter at their intersection progressively filled before gradual back-stepping and onlap of the basin margin in the subsequent phase
Depositional sequences

- Individual sequences grouped in sequence sets, recording evolving slope accommodation
- Initial extensive sheet-like ponded aprons vertically succeeded by perched lobe complexes with distributary channels, followed by slope valley complexes
- Lateral confinement in the E persists
- Vertical amalgamation of sequences through channel incisions
Schiehallion reservoirs and seals

- The main producing interval spans four amalgamated sequences containing both lobe and channel complexes
- Lobes typically thicker than channels, with channel complexes showing more aggradation upward
- Drapes thin (10-20m) and/or containing thin sands and silt
- Trapping aided by fault offset and slump scars
Geometry

- A N-S confined fairway developed at the end of the ponded phase
- Narrower and straighter channels at the onset of the back-filling lobe-dominated perched sequence
- Channel belts become wider and extend further basinward as the bypass progressively develops
- The prograding clinoform sequence contains multiple straight gullies feeding coalescing toeset aprons
Sabah
NW Borneo, Malaysia

Deep-water fold & thrust belt with syn-depositional turbidites
Tectonics & sedimentation

- Basin margin succession deposited within an intermittently active foreland fold/thrust belt
- Outboard propagation of thrusting and associated folding
- Frequent shelf-edge sediment instability
- Pre-kinematic turbidite sequences followed by syn-kinematic ones
Mass wasting, incisions, ponding and healing

- Anticlines generated by thrust propagation link into a series of shelf-parallel ridges
- Parts of anticline trends progressively buried by slope segments reaching equilibrium profile
- Active deformation frequently triggers mass wasting
- Steep slopes are dissected by incised submarine valleys feeding perched and ponded slope aprons
- Different architectural elements co-exist laterally along the same slope position

Active processes:
- Regional-scale mass wasting of shelf edge/upper slope
- Local instability of anticline flanks
- Submarine valley incision on high-gradient slope
- Slope apron deposition on localized flats/basins
Fill of a ponded accommodation

- Forced sinuosity of feeder systems as the anticlines grow and overlap
- Shape of the apron defined by syncline
- MTCs intercalated with turbidite units
- Channelization & bypass as updip depocentre fills and gradient increases
Mud-prone units slumped in core and BHI, showing variable thickness in depocentre

- Lobes offset stacked, showing some compensation with underlying MTD thick
- Sand-rich distributary channels
- No lobe-complex amalgamation across MTDs – four reservoir-seal pairs in place
Confined geometry & forced stacking

- A shallower better imaged interval used as a geometric analogue for the reservoir
- Reduced length/width ratio of the lobes possibly due to syncline confinement
- Lateral stepping of successive lobe storey sets creating a wide lobe complex
- Thin and straight channels loosely organised into belts also show periodic lateral steps
Summary & conclusions
Lobes and lobe complexes show a degree of confinement even in prograding clinoforms and in passive margins – a role of depositional topography in the multi-feeder slope systems as opposed to point-source basin-floor fans?

Mixed to sand-rich channel systems in the shown examples are straight to sinuous, rather than meandering.

Healing of the above grade slopes in studied passive margins is accompanied by progressively widening and more sinuous channel belts.

Highest sinuosity seen in isolated channels of the multi-feeder clinoform slopes, or where channel belts are tortuous due to confinement.
Key characteristics of DW sequences in static & dynamic basins

Intra-cratonic sag basin with prograding clinoforms
- Rapid progradation fed by significant long-shore currents
- Multiple isolated sinuous channels originate at shelf break
- Steep slopes allow sand bypass of the upper slope – trap creation
- Limited erosion prevents amalgamation – multiple RSPs
- Adjacent lobes provide lateral confinement through their topography

Passive margin with inherited rift topography
- Underlying faulted grabens initially create ponded accommodation
- Episodic fault reactivation focuses subsidence and confines fairways
- Progressive healing leads to back-stepping of perched aprons followed by an incision of channels within graded slope valleys
- Perched to graded sequences amalgamate – vertical connectivity

Fold & thrust belt with syn-depositional turbidites
- Fold linkage may evolve tortuous fairways into ponded depocentres
- Widths of feeder systems is variable – determined by confinement
- Lateral offset of lobes is common, creating wide shingled complexes
- Onset of spill from filled depocentres abrupt – late bypass channels
- Frequent degradation of fold flanks produces MTDs – effective seals

STATIC to DYNAMIC

West of Shetlands

Sabah

STATIC

West Siberia

DYNAMIC
References

