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Abstract

To date very few outcrops in the Ardmore Basin and Arbuckles area of Oklahoma preserve a complete stratigraphic section of the Woodford
Shale. In this study, we present the results of an unpublished and recently discovered Woodford outcrop in southern Oklahoma.
Characterization techniques such as XRF, XRD, SEM, TOC, and petrography, tied with subsurface well-log responses provide significant
contributions towards a better understanding of the shale heterogeneities at different scales. The exposed section comprises the entire
Woodford Shale (320 ft), and partially its under- and overlying units, the Hunton Group and Sycamore Limestone respectively. The lower
contact is sharp and characterized by the presence of a Pre-Woodford coarse sandstone (Misener Sandstone?) interbedded with non-organic
greenish and brown shales. The upper contact with the Sycamore Limestone is transitionally represented by interbeddings of chert, and black
and greenish mudstones.

Twelve lithofacies were recognized, and distributed into 3 major compositional domains (siliceous, argillaceous and calcareous) and honoring
sedimentological features such as texture, structure, mineral assemblages and bioturbation. Vertical stacking of these lithofacies, tied with
hand-held Gamma Ray profiles and chemostratigraphic proxies reveal a cyclical pattern interpreted as fourth-order transgressive (TST) and
regressive (HST) cycles superimposed onto a major third-order stratigraphic sequence. Also, a Maximum Flooding Surface (MFS) was
recognized near the transition between the middle and upper members of the Woodford Shale. Reservoir quality of this section was assessed
via mineralogical composition, organic richness, porosity and the vertical arrangement of lithofacies; where potential target zones are
interpreted to be composed of high-frequency interbeddings of organic-rich beds (acting as source) and brittle beds (acting as more fracturable
or fractured rocks). According to this model, and relating our high frequency sequence stratigraphic framework, the best horizontal drilling
zones are interpreted within the HST right above the MFS. Finally, but not least with this work, we propose this outcrop as a renovated type
locality for the Woodford shale in Oklahoma, since this preserves the entire Woodford thickness and its boundaries very well exposed, we
think this could be an exceptional opportunity for operators to calibrate subsurface correlations and stratigraphic models of this, and other
resource shales.
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