Mapping and Reservoir Characterization of Geologic Intervals for NGL Storage Applications*

Kristin Carter¹, Douglas Patchen², Jessica Moore³, Mohammad Fakhari⁴, Gary Daft³, Phillip Dinterman³, Michael Solis⁴, Robin Anthony⁵, Katherine Schmid⁵, Brian Dunst⁵, Antonette Markowski⁵, and Stephen Shank⁵

Abstract

The Appalachian Oil & Natural Gas Research Consortium recently completed the Appalachian Storage Hub for Liquid Ethane Study to identify potential storage reservoirs for natural gas liquids (NGLs) derived from the liquid-rich Marcellus and Utica shale plays. The project objective was to identify the best options for storage proximal to a proposed pipeline from areas of shale production in southwestern Pennsylvania to end users in southern West Virginia and northeastern Kentucky. The study's Area of Interest (AOI) included 50 counties centered along the Ohio River Valley corridor in the tri-state region of Ohio, Pennsylvania, and West Virginia. Survey geologists from each of these states collaborated to complete the study within a year's time, assessing three types of storage opportunities (mined-rock caverns, salt caverns, and depleted siliciclastic gas reservoirs) through their desktop evaluation of 10 discreet geologic intervals: the Mississippian Greenbrier Limestone for subsurface mining; the Upper Silurian Salina F4 salt for the creation of cavities through brine extraction; and depleted gas fields in sandstone reservoirs in the Lower Mississippian (Keener to Berea interval); Upper Devonian (Venango, Bradford, and/or Elk intervals), Lower Devonian (Oriskany Sandstone); Upper Silurian (Newburg Sandstone); Lower Silurian (Clinton/Medina and Tuscarora sandstones); Lower Ordovician (Rose Run Sandstone); and Upper Cambrian (Gatesburg Formation and Upper Sandy member). The research team prepared maps of depth, thickness and extent for each interval; compiled existing siliciclastic reservoir data at the field level using multiple regional data sources; and conducted new qualitative petrographic analyses to support reservoir characterization activities. This information was used to identify a short list of the most promising NGL storage reservoirs, to which geology-based ranking criteria developed specifically for this study by the research team were applied. As a result of these efforts, we identified multiple prospects in the AOI where stacked NGL storage opportunities (i.e., a combination of mined-rock caverns, salt caverns, and/or depleted gas reservoirs at different depths within a given geographic area) are recommended for further investigation at the site level.
Selected References

Mapping and Reservoir Characterization of Geologic Intervals for NGL Storage Applications

Findings of the Appalachian Storage Hub Study

Kristin Carter, Assistant State Geologist
Pennsylvania Geological Survey (Pittsburgh, PA)
ACKNOWLEDGEMENTS

• **AONGRC co-authors** – Douglas Patchen, Jessica Moore, Mohammad Fakhari, Gary Daft, Philip Dinterman, Michael Solis, Robin Anthony, Katherine Schmid, Brian Dunst, Antonette Markowski and Stephen Shank

• **Benedum Foundation**

• **Industry Partners** – AEP, Antero Resources, Blue Racer, Charleston Area Alliance, Chevron, Dominion, EQT, First Energy/Team NEO, Mountaineer NGL Storage LLC, Noble Energy, Southwestern Energy, XTO Energy and the West Virginia Oil & Natural Gas Association

• **West Virginia University** – WVU Foundation, WVU Research Corporation, National Research Center for Coal and Energy and WVU Corporate Relations Office

• **Advisory Group**
BACKGROUND

• Liquids-rich Marcellus and Utica Shale production in the tri-state area of OH, PA and WV

• Desire to move natural gas liquids (NGLs) from wet gas areas to industrial sites throughout the greater Appalachian region

• A proposed “6-pack” pipeline from Monaca, PA to northeastern KY and Charleston, WV along the Ohio & Kanawha rivers

• Subsurface storage will be a necessary component along the pipeline route
STUDY GOAL

• Complete a **geologic study** of all potential options for subsurface storage of NGLs along and adjacent to the Ohio River from southwestern Pennsylvania to eastern Kentucky, including a similar study along the Kanawha River in West Virginia

 ➢ Stratigraphic correlation of key units
 ➢ Mapping thickness and structure of key units
 ➢ Reservoir characterization studies
 ➢ Development and application of rating and ranking criteria
RESEARCH PLAN

• Identify geologic intervals as potential candidates for NGL storage
• Correlate regional lithostratigraphy and characterize subsurface geologic units through mapping
• Construct/compile a regional database to include pre-existing (legacy) and new data
• Characterize potential reservoirs (three types)
• Develop criteria for rating and ultimately ranking candidates
• “Drill down” from regional to prospect level by performing reservoir assessments
• Manage these data and provide access through a Study website
THREE MAIN PRODUCTS

• **Regional subsurface study** with correlations, cross sections, thickness and structure maps

• **Criteria** with which to rate and eventually rank candidate formations and reservoirs as safe and secure storage containers

• **A project database and website** in which all of the data and research findings are located and can be accessed by the public and potential storage companies
GEOLOGIC INTERVALS OF INTEREST

Mined-rock caverns
• Greenbrier Limestone (≥40 ft thick; depths of 1,800 – 2000 ft)

Salt caverns
• Salina Group salts (≥100 ft thick)

Depleted gas reservoirs
• Keener to Berea sandstones
• Upper Devonian sandstones (Venango, Bradford, Elk)
• Oriskany Sandstone
• Newburg sandstone
• Clinton/Medina Group
• Rose Run-Gatesburg sandstones
REGIONAL STRATIGRAPHIC CORRELATION

- 10 geologic intervals
- Lateral variations in lithology, facies and nomenclature
- Variations in depth and thickness of units based on depositional environment and post-depositional processes
- Thousands of pieces of data used to correlate lithostratigraphy throughout the AOI
REGIONAL MAPPING – SALINA F4 SALT: DEPTH

- Below deepest occurrence of fresh drinking water
- Not penetrated by many gas wells that could provide vertical migration routes
- Increase in salt plasticity limits lower cavern depths to <7,000 ft

<table>
<thead>
<tr>
<th>Area</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (ft)</td>
<td>5,300</td>
<td>6,200</td>
<td>6,650</td>
<td>6,600</td>
</tr>
</tbody>
</table>
RESERVOIR CHARACTERIZATION

- Determine stratigraphic units or reservoirs with the best geologic and geomechanical properties to ensure long-term, secure storage of ethane and other NGLs

- Legacy data compilation

- Mapping

- Petrophysical calculations

- Qualitative thin section analyses
RESERVOIR CHARACTERIZATION EFFORTS

• Unique characterization efforts for each type of storage container
 ➢ Depth – structure maps
 ➢ Thickness – isopach maps
 ➢ Extent – facies evaluation (Greenbrier) and clean vs. “dirty” salt intervals (Salina F4)
 ➢ Preliminary assessment – screened field-level data for 2,700+ depleted gas reservoirs
GREENBRIER LIMESTONE (MINED-ROCK Caverns)

- Prepare regional structure and isopach contour maps
- Optimum net thicknesses – ≥40 ft
- Optimum depths – 1,800 – 2,000 ft
GREENBRIER LIMESTONE (MINED-ROCK CAVERNS)

• Characterize facies using geophysical logs (RHOB, DPHI, PE) and drillers’ descriptions

• Carbonate ramp environment of deposition

Schematic illustration of Mississippian facies distribution of the Appalachian basin (Wynn, 2003). The main facies types within the AOI were deposited in inner- to mid-ramp settings.
GREENBRIER LIMESTONE – THREE FACIES

Figure 7. Net thickness map of the Greenbrier lime mudstone facies package.
SALINA F4 SALT: AREAS 1 AND 2

Legend:
- F4 salt
- Salt thickness in feet
- Solution mining wells
- Active well
- Abandoned well
- Net salt contour

Maps show the areas where the F4 salt is greater than 100 feet thick.
SALINA F4 SALT: AREAS 3 AND 4
SALINA F4 SALT (SALT CAVERNS)

GEOPHYSICAL LOGS

SALT CORE SAMPLES
SALINA F4 SALT: NET THICKNESS

• Upper F4 Salt vs. lower salt

• Interbedded dolomite and anhydrite within larger salt package
SALINA F4 SALT: EXTENT

- Interbedded nature of salt with anhydrite and dolomite ("dirty" salt) is more extensive outside the 100-ft footprint
- Lateral migration pathways
- Roof collapse
- Casing integrity issues
- Pressure, temperature and cavern shape primarily affect cavern stability
PRELIMINARY ASSESSMENT OF DEPLETED GAS RESERVOIRS

- 2,700+ fields with sandstone reservoir data
- Of these, ~1,500 fields were ≥2,000 ft deep
- Preliminary rating efforts were used to pare down this dataset for more focused work
PRELIMINARY ASSESSMENT OF DEPLETED GAS RESERVOIRS

- Preliminary rating criteria
 - Distance to infrastructure
 - Acreage
 - Average depth
 - Average porosity
 - Net thickness
 - Permeability
 - Pressure
 - Stacked opportunity
 - Mode CO₂ storage

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Description</th>
<th>Range of Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to infrastructure</td>
<td>Proximity of field to any of the existing or proposed pipeline infrastructure, as illustrated in Figure 4-26</td>
<td>0</td>
</tr>
<tr>
<td>>30 mi</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>>20 mi but <=30 mi</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>>5 mi but <=20 mi</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td><=5 mi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acreage</td>
<td>Measured size (or “footprint”) of a field (ac)</td>
<td>0</td>
</tr>
<tr>
<td><=500 ac</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>>500 ac but <=1,000 ac</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>>1,000 ac but <=5,000 ac</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>>5,000 ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average depth</td>
<td>Average depth (ft) at which a field stores/stored natural gas, based on multiple wells completed in that field</td>
<td>0</td>
</tr>
<tr>
<td><=2,000 ft</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>>5,000 ft</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>>2,000 ft but <=3,500 ft</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>>3,500 ft but <=5,000 ft</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PRELIMINARY ASSESSMENT RESULTS

- 134 opportunities
 - 113 depleted gas fields
 - 12 natural gas storage fields
 - 5 limestone areas
 - 4 salt areas
Detailed Rating Criteria

<table>
<thead>
<tr>
<th></th>
<th>Mined-Rock Caverns</th>
<th>Salt Caverns</th>
<th>Depleted Gas Reservoirs</th>
<th>Gas Storage Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to Infrastructure</td>
<td>Acreage</td>
<td>Average depth</td>
<td>Acreage</td>
<td>Average depth</td>
</tr>
<tr>
<td>Acreage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Thickness</td>
<td></td>
<td>Trap integrity</td>
<td></td>
<td>Trap integrity</td>
</tr>
<tr>
<td>Trap integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legacy well penetrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stacked opportunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average pressure</td>
<td></td>
<td>Average Porosity</td>
<td></td>
<td>Average Porosity</td>
</tr>
<tr>
<td>Average Porosity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode CO₂ storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated cumulative gas production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working gas capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rating Mined-Rock and Salt Caverns

<table>
<thead>
<tr>
<th>Mined-Rock Caverns</th>
<th>Salt Caverns</th>
<th>Depleted Gas Reservoirs</th>
<th>Gas Storage Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to Infrastructure</td>
<td>Distance to Infrastructure</td>
<td>Distance to Infrastructure</td>
<td>Distance to Infrastructure</td>
</tr>
<tr>
<td>Acreage</td>
<td>Acreage</td>
<td>Acreage</td>
<td>Acreage</td>
</tr>
<tr>
<td>Average depth</td>
<td>Average depth</td>
<td>Average depth</td>
<td>Average depth</td>
</tr>
<tr>
<td>Net Thickness</td>
<td>Net Thickness</td>
<td>Net Thickness</td>
<td>Net Thickness</td>
</tr>
<tr>
<td>Trap integrity</td>
<td>Trap integrity</td>
<td>Trap integrity</td>
<td>Trap integrity</td>
</tr>
<tr>
<td>Legacy well penetrations</td>
<td>Legacy well penetrations</td>
<td>Legacy well penetrations</td>
<td>Legacy well penetrations</td>
</tr>
<tr>
<td>Stacked opportunity</td>
<td>Stacked opportunity</td>
<td>Stacked opportunity</td>
<td>Stacked opportunity</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pressure</td>
<td>Pressure</td>
<td>Pressure</td>
</tr>
<tr>
<td>Average Porosity</td>
<td>Average Porosity</td>
<td>Average Porosity</td>
<td>Average Porosity</td>
</tr>
<tr>
<td>Permeability</td>
<td>Permeability</td>
<td>Permeability</td>
<td>Permeability</td>
</tr>
<tr>
<td>Mode CO₂ storage</td>
<td>Mode CO₂ storage</td>
<td>Mode CO₂ storage</td>
<td>Mode CO₂ storage</td>
</tr>
<tr>
<td>Estimated cumulative gas production</td>
<td>Working gas capacity</td>
<td>Estimated cumulative gas production</td>
<td>Working gas capacity</td>
</tr>
</tbody>
</table>
RATING DEPLETED GAS RESERVOIRS/FIELDS

<table>
<thead>
<tr>
<th>Mined Rock Caverns</th>
<th>Salt Caverns</th>
<th>Depleted Gas Reservoirs</th>
<th>Gas Storage Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to Infrastructure</td>
<td>Distance to Infrastructure</td>
<td>Distance to Infrastructure</td>
<td>Distance to Infrastructure</td>
</tr>
<tr>
<td>Acreage</td>
<td>Acreage</td>
<td>Acreage</td>
<td>Acreage</td>
</tr>
<tr>
<td>Average depth</td>
<td>Average depth</td>
<td>Average depth</td>
<td>Average depth</td>
</tr>
<tr>
<td>Net Thickness</td>
<td>Net Thickness</td>
<td>Net Thickness</td>
<td>Net Thickness</td>
</tr>
<tr>
<td>Trap integrity</td>
<td>Trap integrity</td>
<td>Trap integrity</td>
<td>Trap integrity</td>
</tr>
<tr>
<td>Legacy well penetrations</td>
<td>Legacy well penetrations</td>
<td>Legacy well penetrations</td>
<td>Legacy well penetrations</td>
</tr>
<tr>
<td>Stacked opportunity</td>
<td>Stacked opportunity</td>
<td>Stacked opportunity</td>
<td>Stacked opportunity</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pressure</td>
<td>Pressure</td>
<td>Pressure</td>
</tr>
<tr>
<td>Average Porosity</td>
<td>Average Porosity</td>
<td>Average Porosity</td>
<td>Average Porosity</td>
</tr>
<tr>
<td>Permeability</td>
<td>Permeability</td>
<td>Permeability</td>
<td>Permeability</td>
</tr>
<tr>
<td>Mode CO$_2$ storage</td>
<td>Mode CO$_2$ storage</td>
<td>Mode CO$_2$ storage</td>
<td>Mode CO$_2$ storage</td>
</tr>
<tr>
<td>Estimated cumulative gas production</td>
<td>Estimated cumulative gas production</td>
<td>Estimated cumulative gas production</td>
<td>Estimated cumulative gas production</td>
</tr>
<tr>
<td>Estimated cumulative gas production</td>
<td>Estimated cumulative gas production</td>
<td>Estimated cumulative gas production</td>
<td>Estimated cumulative gas production</td>
</tr>
<tr>
<td>Working gas capacity</td>
<td>Working gas capacity</td>
<td>Working gas capacity</td>
<td>Working gas capacity</td>
</tr>
</tbody>
</table>
STACKED OPPORTUNITY RATINGS

Legend
- Keene to Berea top 10
- Devonian_gas_top_66
- County boundary
- Newburg_Fields_top_6
- Oriskany_Fields_top_12
- Greenbrier_1800-2000
- Rose_Run_Gatesburg_top_10
- State boundary

0 5 10
Miles
0 5 10
Kilometers
DETAILED RATING RESULTS

- 30 opportunities
 - 22 depleted gas fields
 - 3 salt areas
 - 3 mined-rock areas
 - 2 natural gas storage fields
Relationship Between Rating and Ranking Efforts

<table>
<thead>
<tr>
<th>Mined-Rock Caverns</th>
<th>Salt Caverns</th>
<th>Depleted Gas Reservoirs</th>
<th>Gas Storage Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to Infrastructure</td>
<td>Distance to Infrastructure</td>
<td>Distance to Infrastructure</td>
<td>Distance to Infrastructure</td>
</tr>
<tr>
<td>Acreage</td>
<td>Acreage</td>
<td>Acreage</td>
<td>Acreage</td>
</tr>
<tr>
<td>Average depth</td>
<td>Average depth</td>
<td>Average depth</td>
<td>Average depth</td>
</tr>
<tr>
<td>Net Thickness</td>
<td>Net Thickness</td>
<td>Net Thickness</td>
<td>Net Thickness</td>
</tr>
<tr>
<td>Trap integrity</td>
<td>Trap integrity</td>
<td>Trap integrity</td>
<td>Trap integrity</td>
</tr>
<tr>
<td>Legacy well penetrations</td>
<td>Legacy well penetrations</td>
<td>Legacy well penetrations</td>
<td>Legacy well penetrations</td>
</tr>
<tr>
<td>Stacked opportunity</td>
<td>Stacked opportunity</td>
<td>Stacked opportunity</td>
<td>Stacked opportunity</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pressure</td>
<td>Pressure</td>
<td>Pressure</td>
</tr>
<tr>
<td>Average Porosity</td>
<td>Average Porosity</td>
<td>Average Porosity</td>
<td>Average Porosity</td>
</tr>
<tr>
<td>Permeability</td>
<td>Permeability</td>
<td>Permeability</td>
<td>Permeability</td>
</tr>
<tr>
<td>Mode CO₂ storage</td>
<td>Mode CO₂ storage</td>
<td>Mode CO₂ storage</td>
<td>Mode CO₂ storage</td>
</tr>
<tr>
<td>Estimated cumulative gas production</td>
<td>Working gas capacity</td>
<td>Working gas capacity</td>
<td>Working gas capacity</td>
</tr>
</tbody>
</table>
Relationship Between Rating and Ranking Efforts

<table>
<thead>
<tr>
<th>Mined-Rock Caverns</th>
<th>Salt Caverns</th>
<th>Depleted Gas Reservoirs</th>
<th>Gas Storage Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to Infrastructure Acreage</td>
<td>Distance to Infrastructure Acreage</td>
<td>Distance to Infrastructure Acreage</td>
<td>Distance to Infrastructure Acreage</td>
</tr>
<tr>
<td>Average depth</td>
<td>Average depth</td>
<td>Average depth</td>
<td>Average depth</td>
</tr>
<tr>
<td>Net Thickness</td>
<td>Net Thickness</td>
<td>Net Thickness</td>
<td>Net Thickness</td>
</tr>
<tr>
<td>Trap integrity</td>
<td>Trap integrity</td>
<td>Trap integrity</td>
<td>Trap integrity</td>
</tr>
<tr>
<td>Legacy well penetrations</td>
<td>Legacy well penetrations</td>
<td>Legacy well penetrations</td>
<td>Legacy well penetrations</td>
</tr>
<tr>
<td>Stacked opportunity</td>
<td>Stacked opportunity</td>
<td>Stacked opportunity</td>
<td>Stacked opportunity</td>
</tr>
<tr>
<td>Ranking</td>
<td>Container Type</td>
<td>Field/Location</td>
<td>Geologic Interval</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1</td>
<td>mined-rock cavern</td>
<td>5</td>
<td>Greenbrier</td>
</tr>
<tr>
<td>2</td>
<td>depleted gas reservoir</td>
<td>NORTH RIPLEY</td>
<td>Newburg</td>
</tr>
<tr>
<td>2</td>
<td>depleted gas reservoir</td>
<td>ROCKY FORK</td>
<td>Newburg</td>
</tr>
<tr>
<td>2</td>
<td>depleted gas reservoir</td>
<td>KANAWHA FOREST</td>
<td>Newburg</td>
</tr>
<tr>
<td>2</td>
<td>mined-rock cavern</td>
<td>4</td>
<td>Greenbrier</td>
</tr>
<tr>
<td>3</td>
<td>depleted gas reservoir</td>
<td>CAMPBELL CREEK</td>
<td>Otiskany</td>
</tr>
<tr>
<td>3</td>
<td>salt cavern</td>
<td>1</td>
<td>Salina F4 Salt</td>
</tr>
<tr>
<td>3</td>
<td>salt cavern</td>
<td>2</td>
<td>Salina F4 Salt</td>
</tr>
<tr>
<td>4</td>
<td>depleted gas reservoir</td>
<td>WESTON-JANE LEW</td>
<td>Elk</td>
</tr>
<tr>
<td>4</td>
<td>depleted gas reservoir</td>
<td>CANTON CONSOLIDATED</td>
<td>Clinton/Medina</td>
</tr>
<tr>
<td>4</td>
<td>depleted gas reservoir</td>
<td>COOPER CREEK</td>
<td>Newburg</td>
</tr>
<tr>
<td>4</td>
<td>depleted gas reservoir</td>
<td>ABBOTT-FRENCH CREEK</td>
<td>Venango</td>
</tr>
<tr>
<td>4</td>
<td>natural gas storage field</td>
<td>RIPLEY</td>
<td>Otiskany</td>
</tr>
<tr>
<td>5</td>
<td>depleted gas reservoir</td>
<td>MAPLE-WADESTOWN</td>
<td>Keener to Berea</td>
</tr>
<tr>
<td>5</td>
<td>depleted gas reservoir</td>
<td>ELK-POCA (SISSONVILLE)</td>
<td>Otiskany</td>
</tr>
<tr>
<td>5</td>
<td>gas storage field</td>
<td>RACKET-NEWBERNE (SINKING CREEK)</td>
<td>Venango</td>
</tr>
<tr>
<td>5</td>
<td>salt cavern</td>
<td>4</td>
<td>Salina F4 salt</td>
</tr>
<tr>
<td>5</td>
<td>depleted gas reservoir</td>
<td>CANTON CONSOLIDATED</td>
<td>Clinton/Medina</td>
</tr>
<tr>
<td>5</td>
<td>depleted gas reservoir</td>
<td>CANTON CONSOLIDATED</td>
<td>Clinton/Medina</td>
</tr>
<tr>
<td>6</td>
<td>depleted gas reservoir</td>
<td>BAYENNA BEST CONSOLIDATED</td>
<td>Clinton/Medina</td>
</tr>
<tr>
<td>6</td>
<td>depleted gas reservoir</td>
<td>BURDET ST. ALBANS</td>
<td>Keener to Berea</td>
</tr>
<tr>
<td>6</td>
<td>depleted gas reservoir</td>
<td>CONDIT-RAGTOWN</td>
<td>Keener to Berea</td>
</tr>
<tr>
<td>7</td>
<td>depleted gas reservoir</td>
<td>DUMM RIDGE</td>
<td>Rose Run-Gatesburg</td>
</tr>
<tr>
<td>7</td>
<td>depleted gas reservoir</td>
<td>FRAZEYBURG</td>
<td>Rose Run-Gatesburg</td>
</tr>
<tr>
<td>8</td>
<td>depleted gas reservoir</td>
<td>KIRKERSVILLE</td>
<td>Rose Run-Gatesburg</td>
</tr>
<tr>
<td>8</td>
<td>depleted gas reservoir</td>
<td>DUMM RIDGE</td>
<td>Rose Run-Gatesburg</td>
</tr>
<tr>
<td>8</td>
<td>depleted gas reservoir</td>
<td>DUMM RIDGE</td>
<td>Rose Run-Gatesburg</td>
</tr>
<tr>
<td>8</td>
<td>depleted gas reservoir</td>
<td>ROCKBRIDGE</td>
<td>Rose Run-Gatesburg</td>
</tr>
<tr>
<td>8</td>
<td>depleted gas reservoir</td>
<td>RANDOLPH</td>
<td>Rose Run-Gatesburg</td>
</tr>
</tbody>
</table>
THREE PROSPECTS FOR NGL STORAGE

- Demonstrate how this Study’s regional and field-level geologic data can be applied to underground storage siting work
- Ascertain what site-level data might be necessary as part of a follow-on study
- Stacked storage plays an important role
NORTHERN PROSPECT AREA

- **Clinton/Medina** sandstones in Ohio’s Ravenna-Best Consolidated Field

- Two **Salina F4 Salt** cavern opportunities on both sides of the Ohio River

- **Oriskany** core data indicates another opportunity; suggests stacked potential
CENTRAL PROSPECT AREA

- Greenbrier Limestone mined-rock cavern opportunities
- Keener to Berea Interval depleted gas field
- Venango Group inactive gas storage field
- Upper Devonian depleted gas field to the east
- Salina F4 Salt near Ben’s Run
SOUTHERN PROSPECT AREA

- **Greenbrier Limestone** mined-rock cavern opportunities
- Depleted gas fields in the Keener to Berea Interval
- **Oriskany Sandstone** (depleted gas and natural gas storage)
- **Newburg fields** (North Ripley, Rocky Fork, Cooper Creek and Kanawha Forest) are among the very best of all depleted gas fields
SUMMARY

• Mined-rock caverns
 Greenbrier Limestone
 ➢ Depth
 ➢ Thickness
 ➢ Facies distribution

• Salt Caverns
 Salina Group salts
 ➢ Depth
 ➢ Thickness
 ➢ Extent

• Depleted gas reservoirs/natural gas storage fields
 Devonian-Cambrian age units
 ➢ Reservoir data compilation
 ➢ Preliminary assessment (through rating)

• Detailed rating and ranking efforts
 ➢ Criteria for each storage type
 ➢ Detailed rating results
 ➢ Normalized ratings used for ranking purposes
WHAT WE DID NOT CONSIDER

- Who owns or operates a depleted gas field or gas storage field that was rated highly
- Or if this operator would be interested in NGL storage
- Who owns the rights to the Greenbrier Limestone or Salina Salt
- And again, if the owner might be interested in NGL storage
- If a candidate is in an area of future Marcellus or Utica drilling
- Surficial activities, other than towns or cities
- Cost implications for storage and pipelines
- Focus was entirely on subsurface geology
SUMMARY AND CAVIDATS

• **Multiple options** are present along the Ohio and Kanawha rivers where storage could be constructed in three different types of storage containers.

• Storage capacity and deliverability will ultimately depend on the NGL product(s).

• Storage capacity and deliverability may require more than one facility and/or more than one geologic container per facility (stacked storage).

• We recommend a follow-on engineering and geologic site assessment at any potential site.
THANK YOU!

Kristin Carter, PG, CPG
Assistant State Geologist
Pennsylvania Geological Survey (Pittsburgh, PA)
krcarter@pa.gov

Groundwater Protection Council (GWPC) and Interstate Oil and Gas Conservation Commission (IOGCC), 2017, Underground gas storage regulatory considerations: A guide for state and federal regulatory agencies, 122 p.

Lewis, J.E., in preparation, Appalachian basin oil and gas fields GIS database and CO₂ sequestration capacity calculations: Regional characterization work being performed for the Midwest Regional Carbon Sequestration Partnership (MRCSP).

Seni, S.J., Mullican, W.F. III, and Hamlin, H. S., 1984, Texas salt domes – Aspects affecting disposal of toxic-chemical waste in solution-mined caverns: Bureau of Economic Geology, the University of Texas at Austin, Austin, Texas, 34 p.

Sminchak, J.R., and Gupta, N., eds., 2015, Development of subsurface brine disposal framework in the northern Appalachian basin: Research Partnership to Secure Energy for America (RPSEA) project number 11122-73, Battelle Memorial Institute, Columbus, Ohio, 411 p.

