Porosity and CO₂ Storage Capacity of the Maryville - Basal Sandstone Section in the Kentucky Geological Survey 1 Hanson Aggregates Stratigraphic Research Well, Carter County, Kentucky*

J. Richard Bowersox¹, Stephen F. Greb², and David C. Harris²

Search and Discovery Article #80610 (2017)**
Posted October 23, 2017

*Adapted from poster presentation given at AAPG 2017 Eastern Section 46th Annual Meeting, Morgantown, West Virginia, September 24-27, 2017
**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.
Winner of the “Division of Environmental Geosciences Best Poster” at the 2017 Eastern Section Meeting, Morgantown, WV.

¹Kentucky Geological Survey, University of Kentucky, Lexington, Kentucky (j.r.bowersox@uky.edu)
²Kentucky Geological Survey, University of Kentucky, Lexington, Kentucky

Abstract

The Kentucky Geological Survey drilled the 1 Hanson Aggregates stratigraphic research well, Carter County, northeast Kentucky, to test in situ rock properties in the subsurface for their potential as CO₂ storage reservoirs and confining intervals (cap rock). The Middle Cambrian Maryville Basal sands interval (4600 - 4720 ft) were evaluated to determine effective porosity, clay volume, and standalone potential CO₂ storage reservoir capacity. The interval is composed of two muddy dolomitic sandstones, each about 30 ft thick, separated by about a 40-ft interval of sandy dolomitic mudstones. The upper unit is the Maryville Sandstone, an informal subsurface member of the Maryville Limestone, whereas the lower is the informal Basal Sandstone which overlies a thin Granite Wash on Precambrian Grenville basement. Effective porosity and clay volume in the strata were calculated from the density log using a three matrix shaly-sand model. Four formation lithologies were identified from primary lithology and clay volume: muddy sandstone, sandy mudstone, dolomitic mudstone, and dolomitic claystone. Average effective porosity calculated in the Maryville Sandstone is 8.9% with clay volume of 35.3%. Average effective porosity in the Basal Sandstone is 8.7% with 41.2% clay volume. Effective porosities calculated in this evaluation are a good match with porosity measured in core plugs from the intervals.

Porosity and net reservoir thickness for calculating potential CO₂ storage volume were determined using an industry-standard 7% porosity cutoff. In the 664,500-acre study region around the 1 Hanson Aggregates estimated effective porosity greater than the 7% cutoff is 13.7% and average net reservoir thickness is 34 ft. Storage volume was determined using the methodology of the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory. Estimated P50 supercritical CO₂ storage volume for the Maryville Basal sandstone interval is 654 metric tons/acre and 434.6 million metric tons in the study region. Thus, about 1530 acres would be required to store 1 million metric tons of supercritical CO₂ in the Maryville Basal sands interval.
Thin reservoir sandstones, low permeability (~50 mD), low reservoir volume, and low fracture gradient of 0.581 psi/ft measured in a step-rate test, however, probably makes the Maryville Basal sandstone interval unsuitable for standalone CO$_2$ storage in the southern Appalachian Basin. More likely is that the interval would be part of a stacked-reservoir CO$_2$ storage project, although there are no current or future plans to store CO$_2$ in the region.

References Cited

EPA Region 8, 1999, Step-Rate Test Procedures: Denver, CO, 6 p.

Porosity and CO₂ Storage Capacity of the Maryville – Basal Sandstone Section in the Kentucky Geological Survey 1 Hanson Aggregates Stratigraphic Research Well, Carter County, Kentucky

J. Richard Biercevich, Stephen F. Gribb, and David C. Harris
Kentucky Geological Survey, University of Kentucky, Lexington, Kentucky

Kentucky Geological Survey drilled the 1 Hanson Aggregates stratigraphic research well in Carter County, northeast Kentucky, to test in situ rock properties in the subsurface for their potential as CO₂ storage reservoir capacity. The interval is composed of two muddy dolomitic sandstones, each about 30 ft thick, separated by about 40 ft of sandy mudstone. The interval lies in the Maryville Formation and is part of the Appalachian Basin, which is the site of the Hard Way test project. The Maryville Formation has been extensively studied and is known to contain a variety of rock types, including sandy mudstone, dolomitic mudstone, and dolomitic claystone. Effective porosity and primary lithology and clay volume: muddy sandstone, sandy mudstone, dolomitic mudstone, and dolomitic claystone. Average effective porosity was determined using an industry-standard 7% porosity cutoff. In the 664,500-acre study region around the 1 Hanson Aggregates (dashed blue line), and gamma-ray log curve (black line) from the top of the Kentucky River Fault Zone surrounding the well (above) averages only 34 ft of potential reservoir sands with φ > 7%. Reservoir volume insufficient to store the average annual 50 million metric tons of supercritical CO₂ in the Maryville–Basal sands. Thus, about 1530 surface acres would be required to store 1 million metric tons of supercritical CO₂ in the Maryville–Basal sands. Effective porosity envelope represent lithologic compositions that were approximated (φₑ) for the Maryville and Basal sands. Maximum CO₂ saturation (Sₑ), residual CO₂ saturation (Sₑ), in the region.

CONCLUSIONS

1. Shaly sand analysis of effective porosity of the Maryville–Basal sands section in the Kentucky Geological Survey 1 Hanson Aggregates Stratigraphic Research Well, Carter County, Kentucky.

2. Correlated electric logs for the Maryville–Basal sands section annotated with interval with 100% core recovery. GR, gamma ray; HCAL, high-resolution core analysis; TNPH, neutron porosity; DPHZ, formation density; DTCO, formation total CO₂.

3. Mechanical noise in the pressure data has been filtered from this interval with 100% core recovery. GR, gamma ray; HCAL, high-resolution core analysis; TNPH, neutron porosity; DPHZ, formation density; DTCO, formation total CO₂.

4. The fracture gradient for the Maryville–Basal sands section was 0.581 psi/ft measured in a step-rate test. Thin reservoir sandstones, low permeability (~50 mD), low reservoir volume, and low fracture gradient of 0.581 psi/ft measured in a step-rate test, however, probably makes the Maryville–Basal sandstone interval unsuitable for standalone CO₂ storage in the southern Appalachian Basin. More likely is that the interval would be part of a stacked-reservoir CO₂ storage project, although there are no current or future plans to store CO₂ underground.

5. Access to the drill site was granted by Hanson Aggregates, Grayson, Kentucky, without which this project would not have been possible. MICP testing was provided by the Indiana Geological Survey, Bloomington, Indiana, and rock strength testing was provided by the Battelle Memorial Institute, Columbus, Ohio. All core analysis was performed by Core Laboratories, Morgantown, West Virginia. This research was funded by the Commonwealth of Kentucky through the Energy Independence and Incentives Act of 2007.

Step-rate Test:

Full-size core photos of the Maryville sandstone (left), interbedded dolomitic shale (center), and Basal sandstone (right). Shaliness and pore throat radius histogram from MICP analysis of a core plug from a this core plug is 4×10⁻⁶ mD, suggests that this bed could serve as a caprock.