Unconventional Enhanced Oil Recovery Pilot Projects in the Bakken Formation*

B. Todd Hoffman¹ and John Evans²

Search and Discovery Article #80606 (2017)**
Posted August 21, 2017

*Adapted from oral presentation given at AAPG Rocky Mountain Section Annual Meeting, Billings, Montana, June 25-28, 2017
**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

1Montana Tech, Butte, MT (thoffman@mtech.edu)
2Montana Tech, Butte, MT

Abstract

Unconventional formations such as the Bakken, Niobrara, and Eagle Ford have made a significant impact on the petroleum industry over the last decade, almost doubling the US domestic oil production. These types of reservoirs contain hundreds of billions of barrels of oil in US and Canada alone, but primary recovery factors are still low, typically less than 10%. The need for enhanced oil recovery (EOR) has been documented, but most studies have focused on simulation models and lab tests. The next logical step includes field trials (aka pilot projects). Over the last 8-9 years, there have been a number of pilot tests for both water and gas injection in the Bakken. Results from these small pilots were reported to state agencies, and the first part of this presentation analyzes the available public data on these pilots. Injectivity of gas or water does not appear to be an issue in the Bakken; however, the projects, in general, show early breakthrough times and poor reservoir sweep efficiencies. There was only minor additional oil recovery, but the pilots were limited in scope and duration. No mitigating procedures were implemented to deal with the problems that occurred. This presentation also proposes methodologies for implementing second generation pilots for unconventional reservoirs. Methods are devised to improve understanding of the near well formation before injection starts, detect where fluids are entering and leaving along the lateral and correct for any associated poor sweep efficiency. We also propose long term information collecting strategies and contingency plans to deal with difficulties that may arise during the pilot. Using EOR to increase recovery from unconventional oil fields is important for the continued success of these plays, and this presentation provides a thorough analysis of implementing pilots to help do just that.

References Cited

EOG, 2016, EOG Resources Announces First Quarter 2016 Results and Successful Enhanced Oil Recovery: EOG Resources Press Release, 5 May 2016.

Unconventional Enhanced Oil Recovery Pilot Projects in the Bakken Formation

B. Todd Hoffman & John Evans
Montana Tech
RMS AAPG Meeting
Billings, MT
June 26-28
Outline

- Introduction/Background
- Previous EOR Pilot Tests (waterfloods & gasfloods)
 - What worked, what didn’t work and what we’ve learned
- Future EOR Pilot Tests (engineering/design aspects)
 - What is needed, ideas for improvements, where and when
- Preliminary Eagle Ford Huff-n-Puff Pilot Results
Background

Unconventional Oil Success

80% of increased US oil rate is from unconventional oil reservoirs

- Billions of barrels of oil resource in unconventional reservoirs

US Oil Production

- **Year**
- **Oil Production (millions barrels per day)**

Source: U.S. Energy Information Administration.
Unconventional Oil Opportunities

- High initial rates, but rapid decline
- Low Recovery Factor (~10%)
- Potential for EOR

Potential was identified almost 10 years ago in the Elm Coulee field of Montana
 - Modeling, Experiments and Pilots
Previous Work

Unconventional EOR

Modeling

- Encouraging results
- Difficult to capture unconventional reservoirs behavior
- Over optimistic?

Experiments

- Encouraging results
- Difficult to work with ultra-low permeability
- Over optimistic?
EOR Pilot Tests - Bakken

Locations
- Richland Co., MT
- Mountrail Co., ND

- 7 pilots in MT/ND Bakken
 (2 in MT and 5 in ND)

4 Gas
3 CO₂
1 Natural Gas
3 Water

(SPE 180270)

- Performed from 2008-2014
- 4 Huff-n-Puff
- 3 Continuous

Montana
North Dakota

Richland Co., MT
Mountrail Co., ND

(RMS AAPG 2017 Annual Meeting • Unconventional Enhanced Oil Recovery Pilot Projects in the Bakken Formation • Todd Hoffman)
CO₂ Huff-n-Puff EOR

- **2 Pilot tests** (one in MT and one in ND)
- **Injection rates / pressures**
 - ~1500 Mcf/day @ 2000-3000 psi
 - 30-45 days injection, 30-45 days soak, put on production

Pilot Test #1
- Little to no rate increase observed

Pilot Test #2
- Small production increase

RMS AAPG 2017 Annual Meeting • Unconventional Enhanced Oil Recovery Pilot Projects in the Bakken Formation • Todd Hoffman
2 Pilot tests (one in MT and one in ND)

Injection rates / pressures
- ~1500 Mcf/day @ 2000-3000 psi
- 30-45 days injection, 30-45 days soak, put on production

Injectivity of gas is not an issue

Little to no additional oil recovered
- Enough Gas Injected?

Injected gas observed at offset wells in days
- Conformance control (early breakthrough time) is an issue
Injection rates
- ~1200 bbl/day for two ~45-day cycles (~14 day shut in)

No additional oil recovered

“Frac-hits” complicate interpretations

Pilot Test #3 - ND

Water Huff-n-Puff

<table>
<thead>
<tr>
<th>Year</th>
<th>Water injection times</th>
<th>Oil Rate</th>
<th>Water Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/08</td>
<td>1/09</td>
<td>1/10</td>
<td>1/11</td>
</tr>
<tr>
<td>1/12</td>
<td>1/13</td>
<td>1/14</td>
<td>1/15</td>
</tr>
<tr>
<td>1/16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Little to no oil rate increase observed
Oil increase from offset fracturing

Significant water rate increase observed due to huff-n-puff injection
Water increase due to offset fracturing
“Frac-hits” or “Well-bashing”

- Fracturing newly drilled well impact production from older offset wells by fracking into the well (can be positive or negative)
- Most pilot offset wells were impacted by fracture interference
Pilot Test #6 - MT

Continuous Water Injection

- Injection rates
 - ~1700 bbl/day for 3 months, then
 - ~900 bbl/day for 4 months

- Very fast breakthrough times
Pilot Test #4 - ND

- **Injection rates**
 - ~1350 bbl/day for 8 mo., then 6 mo. shut in
 - ~425 bbl/day for 10 mo.

- **Water Inj. vs Prod. Volumes**

![Graphs showing oil and water rate over time for Injection Tests #4/7.](image-url)
Pilot Test #7 - ND Continuous Natural Gas Injection

- **Injection rates**
 - ~1700 Mscf/day for 2 months

- **Most encouraging of all pilots**
 - All wells have increased oil production (2 wells complicated by frac hits)

Also looked at offset wells North and South of injection well

Graphs:*

- **Offset-North Oil Rate**
 - Flow rate (STB/day) vs. Year
 - Gas Injection

- **Gas Rate Offset-North**
 - Flow rate (Mscf/day) vs. Year
 - Gas Injection
Collectively we have learned from preliminary pilots:

- Injectivity is not really an issue (gas or water)
- Conformance control may be an issue
- Injection volumes may be low
- Have not observed much increase in recovery
 – Final word … or areas to improve?
Phase 2 Field Trials

New Pilots

• Longer term studies (multi-year)
• More holistic approach to pilots
 – Measure and collect more data (cores, logs, fluids, etc.)
• Create a full contingency plan workflow
 – Instead of ad hoc changes as problems arise
• Evaluate conformance control options
• Optimize recovery process
Economics

“The Time is Ripe

“IOR is less capital intensive than primary drilling …”

J. Triepke OILPRO, 5/9/2016

- IOR cap. $1 million
 - Compressors/pumps
 - Flowlines
- New well $5 million

If OpEx (cost of injectant) is low enough to maintain economics?
Preliminary Results

Single well test
- Started ~ beginning of 2013
- 3 cycles in 2013
- then data is masked by more lease wells coming online (Dec. 2013).

Pilot Test A

Oil Production Rate

- Primary
- Increased Production
- Injection

- Graph showing oil production rate over time with data points indicating injection and increased production.
Conclusions

- **Potential is enormous** (100s of billion bbls remain)
 - But much more research is needed

- **Initial Bakken pilot indications are encouraging**
 - But limited in scope and interpretation

- **Second generation of pilots is needed**
 - Deal with bypass stration
 - Additional engineering/technology

Pilot Testing & Research
Acknowledgements / Thank You / Questions

Contact information:
Todd Hoffman
Montana Tech
thoffman@mtech.edu

Unconventional Enhanced Oil Recovery Pilot Projects in the Bakken Formation