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Abstract

The driving forces for conventional accumulations (structural or stratigraphic traps) are Forces of Buoyancy which are due to differences in
densities of hydrocarbons and water. In contrast, the driving forces for unconventional tight accumulations are Forces of Expulsion which are
produced by high pressures. That is an enormous difference and creates unconventional petroleum systems that are characterized by very
different and distinctive characteristics. The Force of Expulsion pressures are created by the significant increase in volume when any of the
three main kerogen types are converted to hydrocarbons. At those conversion times in the burial history, the rocks are already sufficiently tight
so the large volumes of generated hydrocarbons cannot efficiently escape through the existing tight pore system thus creating a permeability
bottleneck that produces an overpressured compartment over a large area corresponding to the proper thermal oil and gas maturities for that
basin. The forces initially created in these source rocks can only go limited distances into adjacent tight reservoirs (clastics or carbonates)
above or below the source. The exact distance will vary depending on the pressure increase, matrix permeability, and fractures of that specific
tight reservoir system. In general, the distances are small, in the orders of 10s to 100s of feet for oil and larger for more mobile gas systems.
Those exact distance numbers are subject to ongoing investigations. Because the system is a pore throat bottleneck with very little or minimum
lateral migration, the type of hydrocarbons are closely tied to the thermal maturity required to generate those hydrocarbons. Thus the play
concept begins with two important geochemical considerations: (1) where are the source rocks and what are the kerogen types and organic
richness (TOC), and (2) where are they mature in the basin for oil, condensate, and gas in the basin. These parameters will very quickly define
the fairway for the play. Then one has to add the critical information on the reservoirs themselves: composition (brittleness), thickness, and
reservoir quality (matrix porosity and permeability). In summary, these tight unconventional petroleum systems (1) are dynamic and (2) create
a regionally inverted petroleum system with water over oil over condensate over gas for source rocks with Type | or Il kerogen types.
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The driving forces for conventional accumulations
(structural or stratigraphic traps) are Forces of
Buoyancy which are due to differences in densities of
hydrocarbons and water. In contrast, the driving forces
for unconventional tight accumulations are Forces of
Expulsion which are produced by high pressures. That
is an enormous difference and creates unconventional
petroleum systems that are characterized by very
different and distinctive characteristics.

The Force of Expulsion pressures are created by the
significant increase in volume when any of the three
main kerogen types are converted to hydrocarbons. At
those conversion times in the burial history, the rocks
are already sufficiently tight so the large volumes of
generated hydrocarbons cannot efficiently escape
through the existing tight pore system thus creating a
permeability bottleneck that produces an
overpressured compartment over a large area
corresponding to the proper thermal oil and gas
maturities for that basin.

The forces initially created in these source rocks can
only go limited distances into adjacent tight reservoirs
(clastics or carbonates) above or below the source.
The exact distance will vary depending on the pressure
increase, matrix permeability, and fractures of that
specific tight reservoir system. In general, the
distances are small, in the orders of 10s to 100s of feet
for oil and larger for more mobile gas systems. Those
exact distance numbers are subject to ongoing
investigations.

A plot of the pressure data versus elevation for a given
formation is critical in determining whether an
accumulation is conventional or unconventional.
Conventional accumulations will have hydrocarbon
columns of 10s to 100s of feet with the pressure in the
hydrocarbons and that in the water equal at the bottom
of the accumulation (at the HC-water contact). In
contrast, the unconventional accumulations will show
HC column heights of 1000s of feet with the pressure
in the hydrocarbon phase and the water phase being
the same at the top of the accumulation (at the updip
transition zone). Those significant differences are
critical for understanding and differentiating these two
play types.

Because the system is a pore throat bottleneck with
very little or minimum lateral migration, the type of
hydrocarbons are closely tied to the thermal maturity
required to generate those hydrocarbons. Thus the
play concept begins with two important geochemical
considerations: (1) where are the source rocks and
what are the kerogen types and organic richness
(TOC), and (2) where are they mature in the basin for
oil, condensate, and gas in the basin. These
parameters will very quickly define the fairway for the
play. Then one has to add the critical information on
the reservoirs themselves: composition (brittleness),
thickness, and reservoir quality (matrix porosity and
permeability).

In summary, these tight unconventional petroleum
systems (1) are dynamic and (2) create a regionally
inverted petroleum system with water over oil over
condensate over gas for source rocks with Type | or Il
kerogen types.

Outline

. Continuous (unconventional) versus
discrete (conventional) traps

. Oil expulsion and accumulation

. Forces of expulsion versus buoyancy

. Abnormal pressure systems

. Microfractures

. Pressure compartments through time

. Residual oil and water saturations

. Inverted petroleum systems

. Check list for finding continuous

accumulations
. Summary
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What Makes it Unconventional?

—

. Quality of the reservoir (tight to very
tight)
. Type of trap (continuous)

. State the gas or oil is in (sorbed, tar,
solid, kerogen)

4. Physical laws that control occurrence
(generally not buoyancy driven )

. Viscosity and permeability
. Technology required to produce/extract
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In general, the gas or oil is difficult to
produce for some reason.

Viscosity & Permeability

Modified from Cander, 2012
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Deep Basin
Continuous Accumulations

. Pervasive accumulations that are
hydrocarbon saturated

. Not localized by buoyancy

. Abnormally pressured (high or
low)

. Commonly lack downdip water

. Updip contact with regional water
saturation

. Low-permeability and low matrix
porosity reservoirs

. Reservoirs may be single or
vertically stacked

. Commonly enhanced by fracturing

. Associated with mature source

rocks that are either actively
generating or have recently
ceased generation

. Hydrocarbons of thermal origin
. Fields have diffuse boundaries
. Inverted Petroleum Systems

The Petroleum System
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MICP and Unconventionals
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Unconventional Petroleum Systems

Forces of Expulsion

The driving forces result from
changes in volume as kerogen
matures

Volume of original
unaltered "immature”

Volume of original
unaltered "immature”

Where Did All the Water Go?
« Compaction dewatering
» Hydrogenation of kerogen
« Conversion to CO2
» Other reactions
» Displaced from reservoir
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Net Volume increases in sapropelic and
humic kerogens with increasing thermal
maturity (Meissner, 1980)

This large volume change in
tight rock creates FORCES OF
EXPULSION (Pressure Driven)

Very different from the FORCES

OF BOUYANCY (Density Driven)

we are used to for Conventional
Systems

Forces of Expulsion

* |nitially creates an over-
pressured compartment

« Drives remaining water out of
system (helps dehydrate the
system)

* Forces oil and condensate into
very tight pore space resulting in
low water saturations

« Creates vertical extensional
fractures & horizontal bedding
parallel fractures
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ORGANIC FACIES is DETERMINED MAINLY BY:

1. ORIGIN OF ORGANIC REMAINS (AQUATIC PLANTS VS LAND PLANTS)
2. DEPOSITIONAL ENVIRONMENT (OXIC VS ANOXIC)
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Kerogen Types For Unconventionals

Shale Gas

Type |, I

Largely sorbed gas; very low matrix k, fractures (?); Source =
reservoir

Ex: Barnett, Marcellus

Shale Oil

Type |, I

Very low matrix k, source = reservoir
Ex: Eagle Ford, Niobrara, Green River

Shallow Biogenic Gas (e.g., Niobrara)
Type I, 1l

High ¢, low k, partly sorbed

Ex: Niobrara eastern CO

Tight Gas

Type |, I, 11l

Partly sorbed; low matrix k; fractures, Source # reservoir
Ex: Williams Fork, J SS, Codell, Frontier, Turner

Tight Oil

Type |, I

Low matrix k, analogous to tight gas, clastics or carbonates,
Source # reservoir

Ex: Bakken, Niobrara, Barnett

CBM

Type Ill (Coal)

Sorbed gas; thermogenic or biogenic; source = reservoir
Ex: Fruitland Coals, Cameo, Ferron, Ft. Union

Tar Sands

Type |, 1l

Biodegraded oil, long range migration,
Ex: Canadian Tar Sands

Oil Shale

Type I, 1l

Immature kerogen, requires artificial heating
Example: Green River




Unconventional Petroleum Systems
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Microfractures

. Very common in organic-rich
source rocks

. Dilate when we frack the well
with high pressures

. Resulting in really good IPs

. But collapse (?) when
pressure is drawn down

. Resulting in 50-80% first year
declines

. Challenge: how to keep them

open for years not months

Organic Richness and Continuous Oil-
Saturated Network
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Primary migration is possible
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mm

Kerogen-rich source rock

after Katz, 2012 after Durand, 1988
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i —
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| - - L] -
[7="2 pores completely saturated with water 827 organic matter
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“The pressure within the fluids formed in the pores of the
source rock increases constantly in proportion to the
formation of products of Kerogen evolution. If this
pressure rises above the mechanical resistance of the
rock, microcracks will be formed that will be several
orders of magnitude larger than the natural channels of
the rock and will make the outflow of an oil or gas phase
possible until this pressure falls again below the
threshold, so that the cracks are closed and a new cycle
is started”

B.Tissot & R. Pelet, 1971

Microfractures

Lower Bakken Shale

Photomicrograph of the lower Bakken shale showing a mineralized vertical fracture within extremely tight
matrix as seen in the normal light (A). When viewed under UV light (B), bedding-parallel fractures appear to
extend across the matrix and intersect the vertical fracture providing the high permeability pathways and
increase the interporosity flow between the matrix and the fracture system. In C and D, bedding-parallel
fractures appear to be filled with bitumen as they can strikingly be seen under the UV light (D). (Al Duhailan,
2015)

Lower Bakken Shale

Photomicrograph from the lower Bakken Shale containing abundant radiolaria and bedding-
parallel fractures. (Al Duhailan, 2015)

Niobrara Formation
Gill # 2

A marl: 6697 ft

Niobrara Formation
Lee 41-5

B Chalk

Photomicrographs showing an example of petroleum-expulsion fractures within the B chalk
bench in the Denver Basin. The fractures appear as bedding-parallel fractures mimicking the
wispy stylolitic laminations (Well name: Champlin Lee 41-5). Al Duhailan, 2015

Beef Fractures

« Bedding-parallel, calcite-filled fractures
named by quarrymen “beef” fractures
based on their resemblance to the
fibrous fascia seen in beef (Cobbold and
Rodrigues, 2007)

* Organic-rich, calcareous shales
commonly host these features.

Formation of Beef Fractures
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Horizontal vein opens vertically, so fibers are straight and
form quasi-vertically
Often complexed with solid or liquid hydrocarbons
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Mohr stress diagram illustrating the change in stress
with increasing pore pressure (Jamison, 2013).
Uniaxial strain diagram on right (bounding rocks
restrict lateral expansion.

“Beef Fractures” in Shales
correlate with:

1) Organic-richness

2) Thermal maturity

3) Overpressuring

4) Mechanical anisotropy

5) Calcareous material in the shales
(e.g., coccoliths in the Mesozoic
examples)

Mechanisms for forming Beef

1. Crack-seal: Vein calcite crystals infill pre-
existing fractures

2. Force of crystallization: Crystal growth
exerts stress

3. Hydrocarbon expulsion creating fractures

due to volume expansion and increase
in pressure by petroleum expulsion from
kerogen (e.g., Momper, 1978; Meissner,
1978; Lewan, 1987)

Haynesville

» Gas production & pressure gradient 0.9 psi/ft

» Depths between 10,000 and 13,500 ft and
ranges in thickness from 200 to 350 ft

* Natural fractures in the Haynesville exist as
bedding-parallel veins of fibrous calcite (beef
fractures), which are pervasive within the
highly overpressured and anisotropic
intervals

« Commonly misinterpreted as Inoceramus
shell fragments

1 , ]
Bedding-parallel veins of fibrous calcite (Beef's) in the Haynesville.
(Core sample Sample 10H #1, Red River Ph., LA)

Core slab piece, Vaca Muerta Formation, showing
three fracture types: 1) non-mineralized, closed
bedding-parallel fractures, 2) bitumen-filled, bedding-
parallel fractures, 3) bedding-parallel, calcite-filled
fractures (Duhailan, 2014)




Unconventional Petroleum Systems

il

Forces of Expulsion And
Residual Hydrocarbon Saturation

Bakken Petroleum System

Source Rock
(Upper and Lower Shales)

Bakken

Threé Forks E T Overpressure

Reservoirs: Source Beds:
Middle Bakken, Pronghorn & Three Forks Upper & Lower Bakken Shales

“what was made in the Bakken, stayed in the Bakken PS”
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Look At Some Typical Sws

Most of the units are at irreducible water saturation which for these tight
rocks requires those enormous forces of explusion pressures.

Some typical Sw values:

- Wasatch at Altamont: < 10%

- Cardium at Pembina: < 20%
Austin Chalk in Texas: < 20%

Spraberry in W. Texas: 20 - 30 %

Examples of
Inverted Systems
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Vitrinite reflectance Bazhenov Shale,
West Siberian Basin, Ulmishek, 2003

The Unconventional Check List

e Continuous type of Accumulation
* Areally or vertically pervasive

* Hydrocarbon saturation (O or G)
* Abnormally pressured

* Lack of down-dip water

* Low ¢ &k

* Lack of obvious seal or trap

* QOil or gas generation window

e Updip transition to wet

* Enhanced sweet spots

* Large calculated OOIP or OGIP

e Tectonically “quiet”

Summary

. Unconventional resource plays
are ‘changing the game’

. It all starts with good to
excellent source beds

. Type | & Il Source Beds

. Type Ill OM too disseminated

. Source beds mature over large
areal extent

. Natural fracturing enhances
tight reservoirs

. Inverted systems common

. Horizontal drilling and fracture
stimulation technology
important in tight oil & gas plays
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