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Abstract 

Characterizing unconventional reservoirs involves the investigation of a wide range of potential source rock targets at various stages of thermal 

maturity. These samples may contain a   mixture of kerogen, bitumen, oil and pyrobitumen within their fabric. Thus, it is critical that we 

properly identify and examine each organic phase in order to better understand reservoir properties. In the present study, we have selected 

samples of gilsonite from a naturally occurring solid hydrocarbon deposit to serve as an analog for characterizing the bitumen phase of 

generation.  

Gilsonite is an aromatic-asphaltic solid bitumen that is found in vertical veins along the eastern portion of the Uinta Basin, Utah. It is thought to 

be an early generation product from oil-prone Green River Shale source beds and is similar to low maturity crude oil in composition. It has a 

high nitrogen content, low sulfur content, high melting point (fusibility) and is soluble in organic solvents. We have used a variety of analytic 

methods to characterize this material, including standard optical organic petrology and scanning electron microscopic imaging to examine the 

occurrence of organic porosity. 

Optical organic petrology analysis using both air and oil immersion objectives show that the polished gilsonite surfaces are typically dark grey 

and featureless. Macerals and inorganics are absent. Visual estimates suggest that fractures make up approximately 1% of the conchoidal 

fracture plane, while the pencillated variety contains approximately 2% fractures along with 5% shallow pits. Scanning electron microscopic 

images also show the occurrence of fractures within gilsonite, but the matrix contains no evident organic porosity. 

The results of our analyses suggest that, unlike pyrobitumen, pre-oil solid bitumen represented by gilsonite was found to contain no significant 

occurrences of organic nanoporosity within its matrix. Gilsonite does have minor pitting and fractures, but these do not represent an effective 

interconnected pore network and are probably artifacts of weathering/sampling. Thus, this material would not represent a potential candidate 

for in-situ hydrocarbon storage capacity. Whether this is typical of all naturally occurring solid bitumen is debatable, considering that gilsonite 
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has undergone some secondary alteration via devolatilization and limited biodegradation. Nevertheless, the pore-scale imaging of this solid 

bitumen provides potentially important new insights for unconventional reservoir characterization. 
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Investigation of Gilsonite may aid our 
understanding of Unconventional Oil Systems 

– Better understand the nature and 
occurrence of bitumen. 

– Develop testing methods to 
distinguish movable oil versus 
immobile bitumen. 

– Use SEM imaging to examine the 
occurrence of organic porosity 
within bitumen. 

– Understand role of water emulsions 
in bitumen occurrence and 
mobility. 

 
PYROBITUMEN HAS 

NANOPORES……WHAT ABOUT 
BITUMEN? 
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from Lewan (2011) 
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Why is it important to 

distinguish “oil” from 

“bitumen”? 

Because nature does! 

Sat 

Aro Polar+Asph 

Sat 

Aro Polar+Asph 

Uinta Basin 
Oil and Bitumen 

Green River 
Pyrolysis Products 

from Ruble et al. (2001) 
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Primary petroleum 
migration 

immature unheated 

kerogen-bitumen  
300oC/72h 

bitumen-oil 352oC/72h 

 125 μm 

Hydrous Pyrolysis of  
Woodford Shale Cores 

from Lewan (1987) 
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from Hunt (1979) 

Generic Classification Scheme for Bitumens 



© 2013 Weatherford. All rights reserved. 

Genetic Classification Scheme for Bitumens 

from Curiale (1986) 
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Gilsonite Characteristics 

• Solid to semi-solid 

• Occurs in dikes or veins 

– Up to 5m x 40km 

• Similar to low maturity crude oil 
in composition 

• Aromatic-asphaltic hydrocarbons 

• High nitrogen, low sulfur content 

• Soluble in organic solvents (CS2) 

• High melting point (fusibility) 
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from Boden & Tripp (2012) UGS Special Study 141 

A) Gilsonite showing columnar “pencillated” structure 
B) Gilsonite select grade showing “conchoidal” fracturing 

Gilsonite Textures 
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from Hunt (1963) 
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Gilsonite Veins 

from Eldridge (1901) 



© 2013 Weatherford. All rights reserved. 

Gilsonite Tar - a mobile bitumen phase 
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Actively seeping 
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Origin of Gilsonite 

1. Lacustrine oil shale kerogen bitumen 
• Low thermal stress 
• Pre-oil generation stage 
 

2. Expulsion from shale source rock – exceeds 
retention capacity – creates hydraulic fractures 
through extensive stress, viscous bitumen 
migrated vertically through fractures  
 

3. Secondary alteration after injection into veins 
Solidification, devolatilization, possible biodegradation 
Solid Bitumen 
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Gilsonite Chemical Structure Model 

Model of the main components of gilsonite structure.  A typical ‘‘monomer unit’’ 
containing one pyrrolic aromatic ring and 21 carbons is outlined by the dashed ellipse. 
 
Gilsonite exists as a highly diverse mixture of molecules of various size and structure. The 
model structure shown here represents the high molecular weight fraction, while 
smaller fragments are also common. 

from Helms et al. (2012) 
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Gilsonite Elemental Analyses 

from Helms et al. (2012) 
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Gilsonite EDS Spectra 
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Gilsonite EDS Elemental Maps 
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Scale of Characterization 

Methane Molecule – 0.4 nm 
Oil Molecules – 0.5 to 3 nm 
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Pencillated Gilsonite  
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Pencillated Gilsonite 

20X Air Objective 40X Air Objective 

Micropore to mesopore size pitting evident 
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Additional photomicrograph showing less 
common pitted pattern not attributed to 
polishing process. 

Typical field of view of ‘pencillated’ 
plane using 40x air objective. 

Pencillated Gilsonite 

40X Air Objective 40X Air Objective 
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Pencillated Gilsonite 
80X SEM 

Ion milled surface exhibits no nanoporosity with rare micropore pits 
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Pencillated Gilsonite 
1550X SEM 

Matrix is featureless and rare micropore 
pits are discontinuous 

5000X SEM 

Enlarged view of discontinuous 
micropore pits 
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Pencillated Gilsonite 
500X SEM 

Matrix exhibits alteration associated with 
SEM imaging upon re-examination 

6000X SEM 

Observed SEM induced fractures and 
distortion within matrix 
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Pencillated Gilsonite 
85000X SEM 

No occurrence of organic porosity even 
at high magnification 

100000X SEM 

Subtle textural features do not appear to 
be associated with organic porosity  
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Pencillated Gilsonite 
1000000X SEM 

Still no visible organic porosity Better…Stronger…Faster 
Bobby Hooghan is the Million Magnification Man 
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Pencillated Gilsonite 
5000X SEM SE 

No major difference between secondary 
electron image and backscatter 

image…..still no evident porosity 

5000X SEM BSE 
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Conchoidal Gilsonite 

400µm 

10X Air Objective 
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Conchoidal Gilsonite 

20X Air Objective 40X Air Objective 

Typical twist hackle mark created by breaking sample 
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Joints and Shear Fractures 

from Jim Speer http://isu.indstate.edu/jspeer/Structure/ 
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Conchoidal Gilsonite 
1000X SEM 

Conchoidal fractures evident but matrix 
shows no organic porosity 

3500X SEM 

Fracture plane with twist hackle marks 
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Conchoidal Gilsonite 
250X SEM 

Edge of conchoidal fracture surface 

2500X SEM 

Enlarged twist hackle marks 
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Conchoidal Gilsonite under Oil Immersion 

Reflected white light  photomicrograph of 
conchoidal fracture plane. Note translucent 
brown area to left typical of bitumens. 

Reflected UV photomicrograph of fracture 
in conchoidal plane showing a ‘fog’ of 
mobile hydrocarbons leeching from 
fracture. 

80X Oil Immersion Objective 80X Oil Immersion Objective 

Fracture 



© 2013 Weatherford. All rights reserved. 

Gilsonite Tilted View Imaging 
90°/150X SEM 

Ion milled contact – perpendicular view Ion milled contact – tilted view 

45°/200X SEM 
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Gilsonite Tilted View Imaging 

Conchoidal fracture surfaces in enlarged 
ion milled contact – tilted view 

45°/800X SEM 45°/800X SEM 

Absence of nanoporosity in enlarged ion 
milled contact – tilted view 
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Organic Petrology & SEM Observations 

• Polished surfaces are typically dark grey and 
featureless. Macerals and inorganics are absent. 

• Visual estimates suggest that fractures make up 
approximately 1% of the conchoidal fracture plane. 

• Visual estimates of the pencillated plane suggest 
approximately 2% of the surface contains fractures 
but also 5% shallow pits. 

• SEM imaging at all scales and angles confirms 
morphology of fractures and pitting along with the 
absence of organic porosity in gilsonite. 
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Summary Thoughts 

– Unlike pyrobitumen, pre-oil solid bitumen represented by 
gilsonite was found to contain no significant organic 
nanoporosity in its matrix. 

– Gilsonite does have minor pitting and fractures, but these 
do not represent an effective interconnected pore network 
and are probably artifacts of weathering/sampling. 

– Bitumen and oil are thought to represent two different 
immiscible phases when water is present, especially water 
dissolved in the liquid bitumen phase. 

– Depending upon thermal maturity, unconventional source 
rock reservoirs may contain bitumen, oil or both, which 
form a continuous expulsion/migration pathway. 
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