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Abstract

The sedimentary fill of arid continental basins may comprise deposits of aeolian, fluvial, and evaporitic environments. While the distribution and
preservation of different facies associations within each environment are reasonably constrained from comprehensive past studies, the relationships
between deposits of coeval environments, and the temporal evolution of sediment through environments, have received comparatively little attention
despite their potential to affect both basin-scale fluid migration and reservoir quality. We present results of studies of sedimentary interactions between
arid environments of the Paradox Basin, USA, along with analysis of the allocyclic-controls upon them. The studies are based upon extensive regional
fieldwork to examine the sedimentology, and 3D photogrammetry techniques to examine geometries and interactions. Fluvial-aeolian sediments of the
Kayenta Formation preserve associations of varied reservoir quality. Relationships between them are spatially predictable, governed by one system's
dominance. A dominant aeolian system limits fluvial sediments to interdune corridors and controls localised sediment supply, resulting in flash-flood and
debris facies of moderate reservoir quality comprising sediments of aeolian calibre and texture. Dominance of the fluvial system restricts aeolian
bedforms and preserves extensive ephemeral fluvial sediments of poor reservoir quality with fluvial textures dominated by extraformational sediment.
The temporal evolution between systems preserves unique facies, but a switch in dominant system takes place quickly, severely limiting the vertical
extent of interactions and potentially isolating reservoir intervals of basin fill. The margin of the Cedar Mesa erg preserves aeolian-evaporitic sediments.
Interactions suggest a dominance of the evaporitic system, even during drier times, with extensive reworking of aeolian sediments into sabkha-related
associations of poor reservoir quality. Interactions can be extensive, but sporadic, in space and time, preserving complexly interbedded relationships of
clean aeolian and evaporitic strata that can both compartmentalise and provide migration pathways to connect reservoir intervals. Our studies provide
evolutionary models that we apply to subsurface data from the arid Permian basins of the North Sea, UK — an active hydrocarbon province — in order to
better characterise basin-scale migration and reservoir quality in terms of the evolving basin fill.
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Geological Setting Interactions & Fluid Migration Basin-Scale Relationships

The sedimentary fill of arid continental basins may comprise deposits of aeolian, fluvial, and evaporitic environments. While the Interactions between architectural elements and facies assemblages in different arid environments have the Climatic cyclicity in arid aeolian systems can be used as a correlation tool by identifying wet and drying cycles S—
distribution and preservation of different facies associations within each environment are reasonably constrained from comprehensive potential to control permeable and non-permeable pathways through those environments, effecting both and correlating on the points of maximum aridity or humidity. This technique has proved valuable in L :W%T;
reservoir quality at the smaller scale and fluid migration pathways at the basin scale. correlating deposits with the wet desert system of the Cedar Mesa Sandstone of the Paradox Basin, Utah
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Introduction

Discussion
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Discussion & Conclusion
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