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Abstract

Petroleum geochemistry and basin modeling, also known as petroleum systems analysis, are used along the entire subsurface value chain from
exploration to production. Traditionally these disciplines have been applied mainly in Regional Exploration and Prospect Evaluation to
evaluate source rock properties, charge and fluid property risk. Exploration wells have for decades been a key way to acquire data on source
rock properties and thermal maturity, which are used in further evaluation of a basin. Fluid data from discovery wells are used to calibrate basin
models, as well as in Appraisal and Development. Geochemistry plays a key role in the assessment of failure in dry holes, which can be critical
in evaluation of remaining prospectivity in a basin. A detailed fluid property description across a field from geochemical and PVT fluid data,
combined with a thorough filling history from basin modeling, can be used in Appraisal and Development of a field to help assess connectivity
and compartmentalization. These data can also help predict the likelihood of compositional grading, tar mats, flow assurance issues (wax,
asphaltenes and organic soaps), and biodegradation (heavy oil). Petroleum geochemistry can be used to help address a wide range of
Production issues. These include routine monitoring, allocation, casing issues, water injection problems, compartmentalization, H,S generation
or tar mobilization in heavy oil fields. This is probably the main area where geochemistry is currently underutilized. Basin models have been
mainly used in the past as a “one way” technology, where the output is the end product, and not used routinely to model at field scales.
However, this has slowly changed over the last two decades, as basin modeling has become more integrated into an iterative, full cycle
workflow. Rock properties from seismic are fed into basin models, and pore pressure predictions back into seismic until the pressure and rock
properties are in agreement. Reservoir quality prediction on a prospect scale uses basin modeling derived pressure and temperature (p-t)
histories as inputs to a reservoir quality models, which are used to either predict porosity, or evaluate if the p-t history can explain the measured
porosities. An overview of these synergetic technologies and workflows, and their importance in constraining many subsurface uncertainties,
will be presented using published and in house examples.
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Petroleum System Studies - Why and Where?
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Outline

Applications of Geochemistry and Basin
Modelling in:

1. Exploration (Frontier to Drilling)
2. Appraisal and Development
3. Production




Exploration - Geochemistry and Basin Modeling
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Exploration — Basin Modeling Pressure Prediction
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Unconventional Plays

* An unconventional play is not very
unconventional geochemically

 TOC

* Pyrolysis (Rock Eval)
* Vitrinite reflectance
* Gas data

* Additional unconventional specific
data such as...
* Organic porosity,

e Adsorption and expulsion

* It is analogous to starting a review
of a conventional basin or play

Lower Barnett Shale
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Outline

Applications of Geochemistry and Basin
Modelling in:

1. Exploration (Frontier to Drilling)
2. Appraisal and Development
3. Production




A&D - What Causes Differences in Fluid

Compositions in a Field?

 Variations in fluid properties due to:
Filling history (may = disequilibrium)

Post-filling mixing (may = equilibrium)
Alteration (biodegradation)
* Reflected in properties such as:
Asphaltenes GOR —
Density Viscosity
GC fingerprints Biomarkers
Gas isotopes Etc.

e Connected? or Compartmentalized?
Need multiple data points
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A&D - Effect of Filling and Mixing
Processes on Fluid Composition

“Filling history”
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A&D - Biodegradation & Compositional Grading

Peace River Oil Sands, Alberta, Canada

Compositional gradients
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A&D - Effect of Compositional Grading on OWC
|

Depth
TVD

Conclusion:
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Well 1 |- Fluid has the same density throughout

* Density = Pressure Gradient/K

OWC with straight line

OWC with curved line
(reservoir at equilibrium)

Pressure

X4,000
® M21B
® M21A 4 X4,500
® M21A North
© M21A South - X5,000
)
S
1 X5,500 =
T
o8
4 X6,000
4 X6,500
4 X7,000
X7,500

3.0 2.5 2.0 1.5 1.0 0.5 0
Optical Density at A =1000nm

Asphaltene gradient in the Tahiti Field, GOM

Freed et al. (2010), Energy & Fuels 24,
3942-3949




A&D - Compartmentalization from GC Fingerprinting
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* Understand filling, equilibration and alteration history

* Integrate fluid geochemistry and PVT, pressure, rock data

Modified using Slide 18 in:

www.slideshare.net/romancel13/practical-wellbore-formation-test-interpretation-120009-2009

Talk by B. Cribbs at AAPG Geoscience Technology Workshop, Houston, 2009
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A&D - Integrated Field Scale Basin Modeling and
Geochemistry
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A&D - Basin Modeling Reservoir Quality Support
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https://www.youtube.com/watch?v=c2yPPp84Tro

Outline

Applications of Geochemistry and Basin
Modelling in:

1. Exploration (Frontier to Drilling)
2. Appraisal and Development
3. Production




Production - Routine Monitoring/Allocation

“SE Asia”
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* Qil fields A, B, C, and D have produced black oil and taxed as normal.
 Qil fields E and G now produce gas/condensate; tax exempt for the first

Hwang et al. (2000), Organic Geochemistry 31, 1463-1474




Production - Problem Solving

* Behind casing pressure due to breaks
(authority threatens closure) After

cleaning

* Tar flowing to the surface during
steamflooding (lost wells, environmental
concern)

* No flow from water injector due to
unknown tar mat (waste of time & money) Waterflood

impeded by
* Solids problems tar mat Before
cleaning
* Unexpected organic soap formation (scale)
due to interaction of water and oil
* Hydrates, Wax, Asphaltenes o
Origin of similar tar mat in nearby field discussed in Dahl & Speers permeability

(1986), Organic Geochemistry 10, 547-558
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Summary abts

APPLIED PETROLEUM

e Petroleum geochemistry and basin modeling address a wide range of issues TECHNOLOGY
from exploration to production

* These tools are well established in exploration of both conventional and
unconventional plays
o Source properties and maturity on a basin and play level
o Prediction of likely phase and potential fluid properties for prospects

o Temperature, pressure and effective stress prediction

* In appraisal and development, these tools can help explain the reasons for, and
make quantified predictions of, variations in fluid and rock properties

o Filling history, post-filling alteration

o Compositional grading vs. compartmentalization
o Reservoir rock quality

* And many production issues can be addressed
o Routine monitoring

o Solving a wide range of problems



