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Abstract

The Late Devonian is characterized by several important environmental perturbations and includes the Hangenberg event, characterized by a mass
extinction, marine anoxia, and a ~+5%o positive carbon isotopic excursion (+CIE) in marine carbonates. The Hangenberg is also associated with the
global occurrence of black shale deposits. Recent work has hypothesized that authigenic carbonates, often formed diagenetically during the
remineralization of sedimentary organic matter, are a volumetrically significant and isotopically depleted sink for carbon, and thus important for
interpreting the environmental implications of isotopic records. Because black shales are a likely host for authigenic carbonates, it is possible that the
Hangenberg +CIE was driven by increased rates of organic carbon and authigenic carbonate burial, a model that has not yet been treated quantitatively.
Here we estimate the mass and isotopic composition of carbonates in the Upper Devonian-Lower Mississippian Bakken Formation. Powdered samples
were collected from three cores covering the Williston Basin depocenter and margin and were analyzed for bulk mineralogical and stable carbon and
oxygen isotopic composition. Carbonates represent a significant mass within the unit — the Lower and Upper black shale members are, on average, ~9
wt.% authigenic carbonate and the Middle member calcareous siltstone is ~48 wt.% carbonate, of which approximately 60% is detrital grains and 40% is
carbonate cements. Carbon isotopic measurements from gas-source mass spectrometry range from -6.5%o to +3.9%0 (VPDB). The basin center and basin
margin cores show a positive 5'"°C shift of +3.0%o and +3.3%o, respectively, from the Lower Black shale into the Middle siltstone. This positive excursion
may reflect the Hangenberg +CIE. However, the basin center core yields 5'°C values that are isotopically lighter by approximately 2%o relative to the
basin margin core. There is also a weak negative correlation between TOC and 3'°C, suggesting that authigenic carbonate produced from remineralized
organic matter is mixing with marine carbonate to cause systematic but small negative offsets in the 8'°C of the basin center relative to the basin margin.
Thus, authigenic carbonates in Late Devonian black shales are unlikely to be a strong lever for driving positive isotopic shifts in the carbon isotopic
composition of seawater, but they remain a significant sink for inorganic carbon that must be considered in global carbon cycle models.
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The Late Devonian is characterized by several
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systematic but small negative offsets in the 5'3C of the

basin center relative to the basin margin. Thus, authigenic Stratigraphic cross-section of the onlapping Bakken Fm and F1. Lower Bakken Shale
carbonates in Late Devonian black shales are unlikely to adjacent units; the approximate basinal position of study cores are
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Bakken Diagenesis

Diagenetic carbonates make up a significant
portion of the Bakken Fm, particularly within the
Middle Bakken. Of the ~48 wt% carbonate, on
average 30—45 wt% is made up of cements and
dolomitization replacement (Staruiala, 2015).
Calcite cements occur as well, both typically
forming in early-to-mid diagenetic stages.

Despite the high volume of authigenic
carbonates in the Middle Bakken, bulk 8'3C values
are closer to marine values than in the shales. This
is likely due to the early formation of cements,
rather than large rims forming during hydrocarbon
maturation and migration.

While the carbonate content of the shale
members is predominantly authigenic dolomite, the
bulk values are not as light as organic carbon. This
suggests a more nuanced role of authigenic
carbonate formation in the global carbon cycle.

Covariation between carbon and oxygen isotopic data is a

strong, positive correlation associated with this diagenesis.

common indicator of meteoric diagenesis overprinting:
Qowever, the cross plot below does not show the expected
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A weak negative relationship exists between TOC and &'3C: this may

be due to increased chance of organic carbon recrystallization in
areas of high TOC, yielding isotopically lighter authigenic carbonate/

Modified from Staruiala, 2015

Carbon and Oxygen Isotope Covariation
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The Bakken Formation shales exhibit a high authigenic carbonate volume expected from an anoxic

Conclusions and Future Work

period rich in organic deposition. Because of the control of paleodeposition site and TOC content on

carbonate content, it is clear that the authigenic carbonate component must be estimated on a formation-
scale in order to gain a full understanding of the global carbon cycle during times of perturbation. Our bulk
measurements also provide evidence for the Hangenberg Excursion being contained within the Bakken,
aiding in correlation to the global occurrence of Hangenberg Black Shales.

Contrary to Schrag et al.’'s model, we find that the isotopic composition of carbonates is an admixture
of light organic carbon and heavier marine precipitated carbonate. As can be seen in the below, even low
proportions of organically-derived authigenic carbonates can account for the difference between canonical

ocean values and the Bakken bulk rock &'3C. The carbonate crisis caused by the extinction of reef-

building organisms and redox environment may also promote inorganic carbonate precipitation on the
seafloor. While authigenic carbonates do play a role in the global carbon cycle, further formation-level

studies will be necessary to fully understand how they affect positive isotopic excursions.
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Member TOC! Quartz? K-Spar? Calcite? Dolomite? Pyrite? Clays? Anhydrite?
UBS 10.59 (36 50.40 (65 7.93 1.44 8.83 6.52 21.8 0.03
MB 0.49 571, 28.33 13, 5.05 14.77 32.84 1.16 14.84 1.06
LBS 9.15 (314, 44.59 ) 9.81 112 5.64 6.71 29.89 0

r

Mineralogical and geochemical data compiled from the USGS CRC are summarized above.

Headings marked with ' are in weight % from LECO-TOC measurements, while those with 2 are
weight % from XRD analyses. Sample sizes are given in parentheses.

The data show that the Upper and Lower shale members are generally similar: rich in quartz and

clays, but bearing significant dolomite mass as well. In contrast, the Middle Bakken silt-sandstone is
predominantly carbonate (calcite and dolomite), with lesser proportions of quartz and clay.

[ D284

10959

J

The remaining proxies were measured using sampled powders with a mounted
Thermo Fischer Niton Handheld XRF (120 seconds each sample) at the Wisconsin

Geological and Natural History Survey. Data were calibrated using USGS

standards. Data illustrated as diamonds come from Scott et al., 2017 (WD—XRF and

ICP-MS) as comparison of instrument precision.

Proxies for redox environment and ocean anoxia/euxinia show greater
prevalence in the basin-central E701 core. V/Cr and U/Th as indicators of

anoxia/euxinia were calculated after Jones and Manning, 1994.

Carbonate XRF proxy data correlates with the XRD mineralogical curves, and
underline the relative abundance of dolomite over calcite within the shales. The

Mg/Ca curve as a proxy for dolomite (and illite) covaries with redox proxies,
suggesting a diagenetic control for carbonate in the black shale members.

Euxinia/anoxia promote burial of organic carbon and aerobic respiration by iron- and
sulfate-reducing bacteria, which in turn promotes the remineralization of organic
carbon to authigenic carbonates.
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