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Abstract

Fractured intrusion and extrusions of tectonic origin form prolific reservoirs with substantial hydrocarbon reserves in many mature basins.
Fractured basement reservoirs are commonly thick with irregular porosity and permeability distribution. A proper study of these reservoirs
begins by recognizing the stress regimes, diagenesis processes and attributes of the matrix, and fracture networks.

Fields of hydrocarbon production from fractured basement are well known in numerous basins that are generally formed and dominated by
convergent stresses of strike slip tectonics and related structures. Strike-slip fault related fractures associated with dissolution porosities
formulate the permeability and storage capacity of granitic reservoirs in Bach Ho, Ran Dong, La Paz, Habban, and Bongor oil fields.
Extensional tectonics is responsible of creating normal-fault related fractured reservoirs in El Zeit Bay and Augela-Nafoura oil fields.
Production from fractured extrusion rocks has been established in West Java basin, Deccan play over west India, and Neuquén basin- South
Argentina. Fields of fractured extrusion reservoirs include Jatibarang, Padra, Lumas Las Yeguas, Loma La Lata and Aguada San Roque oil
fields.

It has been found that fracture geometry faithfully depicts the stress regime that dominated the fracturing process. The rock facies and ductility
control the vertical fracture density and the areal distribution of discrete fracture networks. The vertical density is highly biased by the
resolution of measuring tools, well diameter, fracture dip, and the trajectory of boreholes. Since open fractures are mostly vertical, deviated
wells drilled normal to fracture planes are likely to intersect more fractured than a vertical one. Defining the areal distribution of discrete
fracture network over the field or the reservoir is extremely difficult. Hydrocarbon migration path ways, the entrapment mechanism, and seal
vary between basins as the geologic setting differs. Structural bounding faults in hard rocks tend to be open which facilitates hydrothermal
solution and overlying aquifers to invade and percolate the fractured reservoirs. Dissolution effect and diagenesis processes tend to alter the
permeability of fractures and the productivity of oil fields. When depleted, fractured reservoirs may drain juxtaposed hydrocarbon and water
bearing formations. Hydrocarbon resources can be estimated using volumetric calculation at early stages of development. After a certain period



of production, material balance calculation tends to provide more reliable results. This presentation offers insight on integration approaches that
applied on fractured reservoirs in fields with distinct structural styles and facies.
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Common Igneous Rock Types and Log Response

Volcanic or Trachyte Rhyolites Dacite  Andesite Basalt Limburgite Dense
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Transit Time

Fracture detection by Amplitude and
Transit time of the Ultrasonic Borehole
Imager. All fractures will be detected by
amplitude while only open fractures will
be recognized by transit time,
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STC (Slowness Time Coherence)
employs a full waveform analysis
technique to define propagation
mode of waveforms that are acquired
by the DSI ( Dipole Sonic Imager)

tool. Red indicates the maximum
coherence ( Compression arrival)
green designate attenuated coherence
( Shear arrival) as blue displays

mud arrival or Stoneley waveforms.

Compression waveforms are the least
affected by fractures as they are
capable to propagate in solids and
fluids. Shear waveforms tend to be
attenuated as they split when crossing
open fractures filled with mud/oil or
gas.

Taha et al., 1999



Type lllb

Type llla

Stearn's (1968) Fold-related Fractures
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Extension

Thrust (RY) fracture
fault
Master
fault
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=
Strike-slip structural elements angular relationship ( after
Wilcox et al.,1973; Tachalenko & Ambroseys, 1970 ;

Sylvester, 1988)

Different Types of Fractures:

Tectonic Related:
0 Unloading/Sheet fractures

o Fold-related fractures

o Normal and reverse fault-related fractures

o Strike slip/Wrench fault-related fractures

o Fault-related fold fractures

Non-tectonic Related*

o Syneresis fractures (volume reduction by
subsurface dewatering)

o Chicken-wire fractures (mineral phase
changes)

o Cooling/quenching fractures ( contraction
of hot rocks as it cools)

o Gravity related fractures (roof collapse....)

* Modest and/or of limited economic value
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Dynamics of faults (Anderson, 1951)



Fractured Basement in Well A

FMI data of well A

Conduct

Conductive continuous fractures
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Induced Fractures

Fractures consistently strike NW-
SE throughout the penetrated
basement section and parallel to
the contemporary maximum
horizontal stress.

Legend

\ Conductive continuous fractures

\‘ Solution enhanced fractures

% Discontinuous fractures
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Fractures Detection Is Biased By :

e Tool’s sampling

e Borehole Diameter

e Well Trajectory

* Fracture Types and Dip
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Hydrothermal
solutions
‘Water encroachments

Granite Basement

PROVEN OIL IN PROVEN OIL PROVEN OIL AND POTENTIAL OIL IN POTENTIAL OIL SOURCE
FRACTURED BASEMENT IN CLASTIC GAS IN CLASTIC FRACTURED BASEMENT AND GAS IN CLASTIC ROCK CHARGE Aquifer

Natural Fractured/ Cavernous Reservoirs Conceptual Play Setting. (Taha et al., 2009)
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Kirchhoff Pre-Stack DEPTH Migration (2002)
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Steeply dipping fractures (more than 60° ) within reservoir rocks are difficult to image.
Poor signal to noise ratio in deeper reservoir sections with strong multiple interference.
Sharply lateral varying contrast in velocity.

Complex faulting creates fault-shadow at deeper levels.

Enhancement in seismic imaging PSDM_CBM technique ( Bone and Giang, 2008)
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Vertical Borehole deviated SE Borehole
Borehole parallel to fractures Trajector

Redang Island; NE-SW ( yellow) open fractures with idealized SE borehole trajectory.




Macro-Fracture

Micro-Fracture

NP <
- Voids Porosity

Different Types of Porosity:

* Stress-Related Porosity; Macro-and micro-fractures

 Temperature Related Porosity; Cooling fracture and shrink porosity

* Erosion and Weathering Related Porosity; Physical and chemical dissolution and
leached porosity

» Diagenesis Related Porosity; Mineral-phase change fractures and voids

* Induced Porosity; Induced fractures, spall- and breakouts

(Modified after Cuong, 2001
and others)
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Fractured Permo-Triassic tuffaceous formation of the Choiyoi group. It is one of

the main reservoirs in the Medanito field.
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Fracture and Vesicle Porosity in Basalt,
Near Great Salt Lake, Utah (courtesy of
Ron Nelson)
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Zeolite filled the cavities of vesicles in
extrusion .(Courtesy of Colorado College
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Borehole imagery over Diabase intrusion in Loma la
Lata field, Neuquén basin. Horizontal and inclined
fractures were generated by cooling and flexures.
Mottled patterns reflects gas escape vesicles.
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Vesicular with vapor- Interacrystalline
phase crystals . porosity

Network of quench/
cooling fractures

Intraclast porosity Void porosity

Porosity and permeability in Volcanic Reservoirs in Cerro Bandera and
Barranca de Los Loros fields, Neugquén Basins ( Sruoga and Robinstein, 2007)
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Fractured tuffaceous facies in Cupen Mahuida gas field; a) thin section showing micro-fractures with
alteration and dissolution of minerals where porosity reaches 9% with a permeability of 42 mD,

b) open fractures in core partially filled by calcite and silica crystals and c) interpreted borehole image
log showing open fractures (orange), closed fractured (blue) and bed boundaries (green) ( Zubiri and
Silvestro, 2007)



ASR-103; Integrated
petrophysical interpretation
and core data over the
intrusion and metamorphic
zones ( courtesy of
Schlumberger)
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were intersected. Tectonic related o

fractures strike NW-SE with B
subordinate NE-SW partially open 20 ' , E
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LLY-213; The well was deviated 45
degrees to the NE. High numbers of
highly dipping fractures along the
upper and lower metamorphic
zones were intersected. The caliper
data shows that the Borehole is
spalling out over the intrusion
suggesting the presence of high
density fractures. The well tested
1500 BOPD and 17 MMCFGD
( Courtesy of Schlumberger)
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0CC rndd, sb sphr = sphr, mod hd, pred
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I'VD:2812.54n
2842 13

=__— Show #16 (2904m-2917m): Poor show,

— — non odour, non Oil stn, tr - 10% spty

pal yelsh wh DF, slw strmg dull mlky

---- wh CF, v It tea vis cut, pal mlky wh thin
| res ring.

B
~-_
S

INO SAMPLE RETURN FROM 294¢-2966mMD

285056 .

Complete mud loss loss with no return occurred when the well
intersected highly fractured intrusion. It was side tracked due to

stuck pipes.
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Oil and gas fields of the NW Java basin ( Noble et al., 1997)
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The tuffaceous sandstone and basaltic/andesitic rocks of Jatibarang formation is the main reservoir in
Jatibarang field which was discovered in 1969. The field went on production in 1975 and reached the
production rate of 40,000 BOPD of 30° API in 1987. The field produced 80 million bbls in 2003 with an
estimated contingent resources 500 million bbls. In 2008 the reservoir watered out. ( After Adnan et al.,
1991)



Prescription of Success

Understanding the Structural setting, stress regime
and fracture geometry.

Defining the proper seismic imaging of lineaments,
joints and fractured zones.

Setting well trajectories and drilling fluids.

Planning for Borehole logging, coring, sidewall coring,
formation evaluation, testing and completion.

Recognizing Fracture and matrix attributes.
Awareness of Reserve calculations pros and cons.
Strategizing Development Plans and Exploitation

Utilizing data integration and multidisciplinary
approaches








