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Abstract

This study addresses the influence of lithologic heterogeneity at the sub-meter scale on the flow of buoyant fluids for different types of clastic
sedimentary architectures from representative depositional environments. To adequately represent 3D heterogeneity, we present innovative
techniques for generating digital models that combine a well-documented deterministic and descriptive bedform architecture component
mimicking realistic crossbedding geometries with stochastic variability of petrophysical properties. One advantage of this approach is that it
allows consideration of domain sizes larger than whole core and core plugs typically used for laboratory flow experiments, where small sizes
may not fully capture depositional architecture. The main contribution of this study is the development of a predictive model for saturation
estimation based on a comprehensive, yet simplified, set of geological models resembling a range of well-characterized and documented fluvial
clastic facies. Basic geological features such as grain size distribution and sedimentary bedform architecture can be used to predict the fluid
saturation during capillary/buoyancy-dominated flow conditions. These models are unique in regard to their geological realism and permit
evaluation of the impact of sub-meter scale capillary heterogeneity on buoyant fluid flow scenarios that are relevant to petroleum migration,
residual saturations (ROZ), and CO,; flow. The digital models themselves expand characterization opportunities using a number of methods,
including upscaling, connectivity, and bulk property anisotropy. Saturation results from simulations of small-scale domains can be used to
benchmark expected values in larger reservoir scale domains.
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 Understand the processes of capillary/buoyancy-dominated flow.

 Hydrocarbon secondary migration; CO2 injection; ROZ.

Quantify the influence of meso-scale clastic heterogeneity on saturation.

* Predict saturations based on fundamental properties of geology and fluids.




Viscous vs. capillary flow
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Presenter’s notes: Forces controlling flow — triangle

High inertia = high reynold’s number, non-laminar flow, Navier-Stokes approximations.

Bottom of triangle represents tow end members of viscosity and capillary dominated flow.

Transition from capillary to viscous around Ca ~ E-04 (England, 1987) — have more to say about Ca in next slide.

Go through two formalisms: different conceptualizations of important factors controlling flow at different scales — differ in importance put on
capillary forces.

England cutoff: At E-04, capillary forces to viscous forces are 10,000:1; what is behind this cutoff??

For this reason, IP thought of as only representing ‘slow’ (i.e. migration) behavior.

Realistically, this flow can take place quite quickly as has been demonstrated in lab experiments.



Geologic Models with Realistic Heterogeneity
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Impact of capillary heterogeneity and bedform
architecture on fluid saturation
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Presenter’s notes: Now I’m going to show simulation results of 7 cases with different textural contrasts for the same sedimentary model




Impact of 3D capillary heterogeneity and bedform architecture at the
sub-meter scale on CO; saturation for buoyant flow in clastic aquifers
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Meter-scale sand tank visualizations
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IP model of large heterogeneous sand tank
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GHGT-13

IP model of large heterogeneous sand tank
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