PSMixed Carbonates and Siliciclastics North of the Mahakam Delta, Offshore East Kalimantan, Indonesia*

Arthur Saller¹

Search and Discovery Article #51393 (2017)**
Posted June 26, 2017

*Adapted from poster presentation given at AAPG 2017 Annual Convention and Exhibition, Houston, Texas, April 2-5, 2017 See similar articles Search and Discovery Article #50847 (2013) and Search and Discovery Article #30014 (2003)

**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

¹Cobalt International Energy, Houston, Texas, United States (sallerarthur@gmail.com)

Abstract

For the last 7 million years, carbonates have been mixed with siliciclastics north of the Mahakam delta, offshore East Kalimantan, Indonesia. The distribution of carbonates is controlled by the location of deltas, currents transporting siliciclastics, rates of sea level rise, and depositional bathymetry. At the present time, modern carbonates are deposited locally north of the delta while large amounts of sand and shale are coming out of the delta. In the late Pleistocene, carbonate mounds and shelf margin carbonates grew during transgressions when siliciclastic shorelines moved landward. Mounded carbonates preferentially occur on the upthrown side of faults, while shelf margin carbonates grew on underlying siliciclastic or carbonate shelf margins. Thin shales accumulated in lows between carbonate mounds. During highstands of sea level, siliciclastics prograded basinward across the shelf. Many carbonate mounds drowned and were covered with siliciclastics. At the shelf margin, carbonates prograded landward during highstands of sea-level. During the last 7 m.y., shelf margins have been generally backstepping landward north of the Mahakam delta because of rapid subsidence and currents transporting most deltaic clays to the south. Carbonates repeatedly grew during transgressions. During the latest Miocene and Pliocene, thick very elongate carbonates grew on the underlying siliciclastic shelf margins while thinner roughly circular mounds grew on depositional and structural highs of the shelf interior. Most of the carbonates are covered by highstand siliciclastics. The shelf margin and mounded carbonates are mainly lime grainstone and boundstones with good porosity. Unfortunately, shales covering carbonates are downlapping packages that were generally not effective seals.

References Cited

Crumeyrolle, P., and I. Renaud, 2003, Quaternary Incised Valleys and Low Stand Deltas Imaged with 3D Seismic and 2D HR Profiles, Mahakam Delta, Indonesia: AAPG International Conference & Exhibition, Barcelona, Spain, September 21-24, 2003, Search and Discovery Article #90017 (2003). Website accessed June 2017.

Saller, A.H., S.W. Reksalegora, and P. Bassant, 2011, Sequence Stratigraphy and Growth of Shelfal Carbonates in a Deltaic Province, Kutai Basin, Offshore East Kalimantan, Indonesia, *in* W.A. Morgan, A.D. George, P.M. Harris, J.A. Kupecz, and J.F. Sarg (eds.), Cenozoic Carbonate Systems of Australasia: Society for Sedimentary Geology Special Publication 96, p. 147-174.

Mixed Carbonates and Siliciclastics, North of the Mahakam Delta, Offshore East Kalimantan, Indonesia

Arthur Saller, Cobalt International Energy, Houston, Texas

For the last 7 million years, carbonates have mixed with siliciclastics north of the Mahakam delta, offshore East Kalimantan, Indonesia

rifting & fluvial deposition.

carbonate deposition.

Oligocene transgression caused widespread

Miocene uplift in Central Borneo initiated deltaic

deposition with eastward progradation into the

subsiding Kutai basin from Miocene to present

~1000 m

MAKASSAR

At the present, modern carbonates are deposited locally north of the delta while large amounts of sand and clay are coming out of the delta.

level rises & falls, and depositional bathymetry.

Carbonates accumulate during transgressions

when rising sea level pushes shorelines landward.

Highstands & lowstands are dominated by siliciclastics.

During the last 7 m.y., shelf margins have been generally backstepping landward north of the Mahakam delta because of rapid subsidence and currents transporting most deltaic clays to the south

The distribution of carbonates is controlled by the location of deltas, currents transporting siliciclastics, sea

LATE PLEISTOCENE CYCLES (300 KY – PRESENT)

During Transgressions & Rapid Sea Level Rises, Siliciclastic Shorelines Moved Landward & Carbonates Grew, especially on Shelf Margins

Seismic & well data with U-Th dating allow carbonate & siliciclastic deposition to be put onto the eustatic sea level curve

> During Highstands & Falling Sea Level Siliciclastic Shorelines & Deltas Prograded Basinward

70-120 Ka Highstand

130 Ka Lowstand

Material in these posters is from Saller, A.H., S.W. Reksalegora, and Philip Bassant, 2011, Sequence Stratigraphy and Growth of Shelfal Carbonates in a Deltaic Province, Kutai Basin, Offshore East Kalimantan, Indonesia, in W.A. Morgan, A.D. George, P.M. Harris, J.A. Kupecz, and J.F. Sarg, eds., Cenozoic Carbonate Systems of Australasia: Society for Sedimentary Geology Special Publication 96, p. 147-174.

LATE PLEISTOCENE Mixed Carbonates & Siliciclastics, North of the Mahakam Delta, Offshore East Kalimantan, Indonesia

the gray shaded upper to

lower slope image

Shelf Interior Buildup on Upthrown Side of Fault

Prograding HST-LST siliciclastics bury

carbonate TST & no carbonate HST

unstained). 62 mbs

coralline algae (A), & a large

been partially replaced with

LOWER SLOPE

equant calcite cement (C).

Some of the original coral

has been dissolved, and

(arrows); 111.6 mbsf

coral fragment that has

Pleistocene Sea Level

Pleistocene Sea Level Fluctuations are ~100 m

Some ages are inferred from stratigraphic relationships

A. 250 KA: LOW SEA LEVEL

develops

Mixed Carbonates and Siliciclastics, North of the Mahakam Delta, Offshore East Kalimantan, Indonesia

Arthur Saller, Cobalt International Energy, Houston, Texas

TRANSGRESSIVE SHELF MARGIN & MIDDLE SHELF CARBONATES GREW ON PROGRADING

SILICICLASTICS & WERE BURIED BY LATER PROGRADING SILICICLASTICS (HST-LST)

MIDDLE SHELF CARBONATE IN SHALE

DEPOSITIONAL MODEL FOR MIDDLE SHELF CARBONATES

Material in these posters is from Saller, A.H., S.W. Reksalegora, and Philip Bassant, 2011, Sequence Stratigraphy and Growth of Shelfal Carbonates in a Deltaic Province, Kutai Basin, Offshore East Kalimantan, Indonesia, in W.A. Morgan, A.D. George, P.M. Harris, J.A. Kupecz, and J.F. Sarg, eds., *Cenozoic Carbonate Systems of Australasia*: Society for Sedimentary Geology Special Publication 96, p. 147-174.

LATE MIOCENE-PLIOCENE

During Highstands & Falling Sea Level
Siliciclastic Shorelines & Deltas Prograded
Basinward

During Transgression & Rapid Sea Level Rises, Siliciclastic Shorelines Moved Landward & Carbonates Grew. Biggest Carbonate Buildups are on the Shelf Margin. Small Buildups on the Middle Shelf

During Highstands & Falling Sea Level
Siliciclastic Shorelines & Deltas Prograded
Basinward & Buried Many Carbonates

3D of Top Upper Carbonate with Overlay of Carbonate Thickness

3D of Lower Carbonate with Overlay of Thickness

Relatively Rapid Subsidence Allow Very
Rapid Carbonate Growth

LATE MIOCENE- PLIOCENE DEPOSITIONAL HISTORY

D. Transgression after KR50 Time: High Sea Level

LATE MIOCENE-PLIOCENE SHELF MARGIN CARBONATE

planktonic forai (deep water)