Characteristics and Origin of Source Rocks in the Small Faulted Lacustrine Basin*

Xiujian Ding¹, Ming Zha¹, Guangdi Liu², Zhilong Huang², Changhai Gao¹, and Xuejun Lu³

Search and Discovery Article #51346 (2017)**
Posted January 30, 2017

*Adapted from poster presentation given at AAPG Annual Convention & Exhibition, Calgary, Alberta, Canada, June 19-22, 2016
**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

¹China University of Petroleum, Qingdao, China (dingxj129@foxmail.com)
²China University of Petroleum, Beijing, China
³Research Institute of Petroleum Exploration and Development, Hubei Petroleum Administration Bureau, Renqiu, China

Abstract

Compared to a large-scale lake basin, the small faulted lacustrine basin is characterized by a small area, shallow water, multi-and-near sources, oxidative sedimentary environment and high sedimentation rate. To recognize the origin of source rocks in a small faulted lacustrine basin, four basins (Aer, Wuli, Saihan, Naoer) in the Erlian Basin Group, one of the most petroliferous basins in northern China, have been analyzed to characterize source rock potential, to reveal environmental and ecological changes and construct source rocks depositional models. These basins have dissimilar boundary fault activities and sedimentation rates, which are consistent with changes in clastic influx input, productivity and redox conditions. With more active boundary faults and higher sedimentation rates, the terrigenous organic matter inputs to Aer and Wuli basins are higher than Naoer and Saihan basins, which can be confirmed by relative steranes abundances. The carbon isotopic composition of carbonates suggests that the productivity of Aer and Wuli basins is higher than that of Naoer and Saihan basins. Total reduced sulfur and Pr/Ph ratios show an oxidizing environment in Aer and Wuli basins, while a reducing environment was present in Naoer and Saihan basins.

Different tectonic conditions lead to variations in ecological communities and enable us to construct source rock deposition models. During source rock deposition in the small basin with active boundary faults and high sedimentation rates, the high influx of clastic sediments carrying high terrigenous organic matter and dissolved inorganic carbon and nitrate into the lake, might have sustained high productivity and oxidizing conditions. Due to high influx of clastic sediments and unstable water column stratification, the depositional environment is oxidizing. In the high productivity lake, there is still significant organic matter accumulation in the oxidized environment after oxidative degradation. High productivity is the dominant factor controlling the formation of organic-rich sediments and deposition of source rocks. During source rock deposition in the small basin with inactive boundary faults and low sedimentation rates, the depositional environment is reducing due to low influx of clastic sediments with low productivity. In the low productivity lake, a reducing sedimentary environment substitutes for productivity and becomes the predominant factor controlling the formation of source rocks.
1. Geologic setting

Erlian Basin is an Early Cretaceous rift basin group developed on Hercynian folded basement and comprises more than 40 north-northeast trending small fault basins, with an area smaller than 5000 km² (Fig. 1, Fig. 2).

The small fault basins are formed by extension during the Jurassic and Cretaceous and dominated by half-grabens or asymmetric grabens, and display similar tectonic evolution and clear basin boundary (Dou, 1998; Dou, 2003).

The Tengger Formation is made up of dark grey-black mudstones interbedded with sandstones and siltstones, with a thickness of 500-2100m, and can be further subdivided into the lower Tengger member (K₃t¹) and the upper Tengger member (K₃t²). Possible source rock horizons exist mainly in the K₃a and K₃t formations. The K₃t² formation is excluded as a possible source rock mainly due to its shallow burial depth and low maturity.

2. Characteristics of small faulted lacustrine basin

Compared to large-scale lake basin, small faulted lacustrine basin is characterized by small area, shallow water, multi-and-near sources, oxidative sedimentary environment and high sedimentary rate.

The small faulted lacustrine basin is an Early Cretaceous rift basin group developed on Hercynian folded basement and comprises more than 40 north-northeast trending small fault basins, with an area smaller than 5000 km² (Fig. 1, Fig. 2).

The Tengger Formation is made up of dark grey-black mudstones interbedded with sandstones and siltstones, with a thickness of 500-2100m, and can be further subdivided into the lower Tengger member (K₃t¹) and the upper Tengger member (K₃t²). Possible source rock horizons exist mainly in the K₃a and K₃t formations. The K₃t² formation is excluded as a possible source rock mainly due to its shallow burial depth and low maturity.

The small fault basins are formed by extension during the Jurassic and Cretaceous and dominated by half-grabens or asymmetric grabens, and display similar tectonic evolution and clear basin boundary (Dou, 1998; Dou, 2003).

The Tengger Formation is made up of dark grey-black mudstones interbedded with sandstones and siltstones, with a thickness of 500-2100m, and can be further subdivided into the lower Tengger member (K₃t¹) and the upper Tengger member (K₃t²). Possible source rock horizons exist mainly in the K₃a and K₃t formations. The K₃t² formation is excluded as a possible source rock mainly due to its shallow burial depth and low maturity.

Fig. 1 Map of the Erlian Basin Group, showing location of each study small fault basin, Aer, Wuli, Jier, Hongte, Naoer, Saihan.

Fig. 2 Cross section shows the structural framework of these small fault basins. Note the thick Cretaceous sediments and strong faulting in the Erlian Basin Group. Section location is given in Fig. 1.

Fig. 3 Generalized stratigraphy of the Erlian Basin. Possible source rock and major reservoir intervals are marked.

Fig. 4 The area and the maximum water depth of the modern lake. The Present is the key to the Past. The max. water depth of small modern lake is usually smaller than 30m. The data comes from Wikipedia.

Fig. 5 The photograph of cores in small faulted lacustrine basin, Erlian Basin Group.

Fig. 6 The depositional model of small faulted lacustrine basin, Erlian Basin Group.

Fig. 7 Histogram of U/Th, Ni/Co values and reducing S content in source rocks, Erlian Basin. A relatively oxic, suboxic and anoxic depositional environment of small fault basin are indicated. The trace elements data and ratios reveal the depositional environment during sedimentation of source rocks (Harris et al., 2004; Fu et al., 2011). Total reduced sulphur contents in sediments may provide insight into the depositional environment and microbial sulphate reduction (Mulier, 2002; Kao et al., 2004).

Fig. 8 Max. and Min. values of sedimentation rate in Mesozoic-Cenozoic basin of China.
3. Source rocks characteristics

In the Erlian Basin, the source rocks in the eastern Basins have higher TOC than the western. For instance, the TOC contents of mudstone samples in the Aer Basin range from 0.36% to 4.87%, while in the Naoer Basin TOC ranges from 0.07% to 2.63%.

Rock-Eval pyrolysis is a commonly-used technique to classify organic matter types and assess hydrocarbon generating potentials (Peters, 1986). In Aer and Wuli Basins, the source rocks have relatively low hydrogen index, indicative of mixed type II and III kerogen. While in Naoer and Saihan Basin, kerogen composition ranges from type I to type III, with bacterial, algal and higher plant remains all making important but variable contributions.

4. Depositional environment

According to reduced sulphur/organic carbon ratio, biomarker characteristics and trace elements distribution, a fresh to brackish water conditions and a relatively oxic, suboxic and anoxic depositional environment of small fault basin are indicated.
5. Controlling factors on organic matter accumulation

The carbon isotopic composition of carbonate is a key indicator of productivity in ancient lacustrine sediments (Isozaki et al., 2007). In Aer and Wuli Basins, productivity is the dominant factor controlling the formation of organic-rich sediments. In Naoer and Saihan Basins, the respective R^2 is 0.31 and 0.27, which indicates no such control on the TOC of sediments. The correlation between TRS and TOC suggests that reducing conditions exerted a control on source rock development in Naoer and Saihan but not in Aer and Wuli Basins.

![Cross-plots of the carbon isotopic composition of carbonate (δ^{13}C) vs. total organic carbon content (TOC) of Aer, Wuli, Naoer and Saihan Basins in the Erlian Basin. δ^{13}C shows a significant correlation with %TOC in Aer and Wuli Basins, indicating the productivity control on organic matter deposition. The lack of significant correlation in Naoer and Saihan Basins samples indicates no such control on organic matter accumulation.](image)

6. Models for source rock deposition

The differences in tectonic settings among these sub-basins caused variations in sedimentation rate, terrigenous organic matter inputs, productivity and redox conditions. The synergetic evolution of environments and organisms in the lake systems accounted for the deposition of the source rocks with distinct characteristics.

![Depositional models for lacustrine source rocks in the Erlian Basin, showing variations in sedimentation rate, terrigenous organic matter inputs, productivity and redox conditions.](image)