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Abstract

We present a new quantitative approach for characterizing fracture frequency variations using a linear piecewise regression (LPR) analysis and
the Akaike Information Criterion (AIC). Break points calculated for the LPRs produce linear segments with varying slopes for a cumulative
fracture frequency (CFF) curve. An AIC value is calculated for each LPR model in order to determine the optimal number of linear segments
that fit the CFF data. The optimal number of segments is obtained by minimizing the AIC value for a single dataset. Results from the statistical
analysis produced three CFF slope intervals that define the distribution of possible fracture frequencies unique to the geologic setting from
which they were derived. A total of 3678 fracture and vein measurements were collected using scanline, scangrid, and abbreviated methods at
38 sites in the Utica black shale and overlying coarser clastics of the Mohawk Valley in eastern New York State.

To produce a CFF curve, fracture frequency is summed along a transect perpendicular to the strike of the fracture set. The piecewise function in
the R package, "Segmented", calculates break points where the slope of the CFF changes. The AIC model selection method produces LPRs
with the optimal number of breakpoints and segments by penalizing additional parameters introduced with each new segment. A comparison
with the Bayesian Information Criterion (BIC) found that AIC models outperformed the BIC method because the BIC equation over-penalized
additional parameters. Segmenting the CFFs produced three unique slope intervals, each with a set of defining characteristics. Background
frequencies are defined by an average CFF slope of 8 with no significant changes in slope (including prominent frequency peaks). The average
background fracture frequency is 2.4 fractures/m. Transition frequencies exhibit higher CFF slopes, averaging 111, and higher average fracture
frequency of 12.3 fractures/m. Fracture intensification domains (including fractures in fault damage zones) are defined by the highest average
CFF slope of 1649, produce prominent frequency peaks (>50 fractures/m) and have the highest average fracture frequency of 44.6 fractures/m.
Results of the piecewise analysis provide quantified boundaries that can be used to create a fracture frequency framework for a defined
geologic setting, aiding in predictions of fracture frequency variations due to local structural features.
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Problems Iin fault damage zone research

Subjectivity (Chol et al., 2016)
Defining “background fracture frequency”

Error introduced in cross-study
comparisons

Solutions to Subjectivity

Quantitative determination of fault damage
zone width

Methodology using piecewise analysis and
the Akaike Information Criterion



Application of Quantitative Analysis

Predicting fault damage zone width and average fracture frequency
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Importance in developing quantitative
analyses of fracture frequency distributions

 Methodology for reliably defining
fracture/damage zone boundaries

* Produce consistent damage zone width
values for multivariate statistical analyses

* Predictable fracture frequency distributions
among varying geologic settings
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Study Area: Chronostratigraphy

W Chronostratigraphic Cross Section along the Mohawk Valley
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Mohawk
Valley
Faulting

Study Area: tectonic model
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Fracture Intensification Domain (FID)

« High-frequency fracture zone

* Do not pre-suppose fault influence or
primary slip surface location

 Can be considered a fracture dominated
subset of fault damage zones in specific
cases (fault(s) present)
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Fracture Intensification Domain (FID)
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Fracture Intensification Domain (FID)
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Field Methods
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Outcrop Overview
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Cumulative Fracture Frequency (CFF)
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Piecewise Regression
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Optimizing Model Complexity

Background Results Discussion Conclusions
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Optimizing Model Complexity
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High Variance
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Optimizing Model Complexity
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Optimum Model Complexity
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Akailke (AIC) - Bayesian (BIC)
Information Criterion

AIC =n + n log(21) + n log(RSS/n) +2(p + 1)

residual sum
constant # of parameters

of squares

BIC =n + n log(21) +|n log(RSS/n)|+|(log n)(p + 1)

-Minimize AIC/BIC values among potential models
-Use change in AIC/BIC values between 2 models
-Significant change in AIC/BIC values = 2
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A Information Criterion
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Model Selection
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Fracture Freguency variations
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Fracture Freguency variations
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Fracture Freguency variations
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Cumulative fracture frequency (CFF)
segment comparison
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Cumulative fracture frequency (CFF)
segment comparison
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Background

Fracture Frequency Intervals

Methods

Based on 15 outcrops

—— —— — average linear regression
1 sigma
CFF slope segments

Transition

Background

distance (m)

Discussion

Conclusions



background slope background y intercept | transition slope | transition y intercept FID slope FID y intercept
0.9065 1.8498 73.169 3.7616 47518 71.74
1.255 3.015 106.23 -1.3595 502.61 -4.3833
1.759 0.7198 108.52 0.1476 1189.2 -5.0608
2.1351 -0.5716 111.33 1.2871 1691 -24.602
2373 0.2051 112.69 -8.8958 2090.4 61.267
3.3435 44701 146.12 -13.934 23011 135.1
44894 -2.876 3014.400 155.25
5.1641 0.0024 3409.8 24.08
5.384 -0.1425 5200 33.542
6.7791 -1.2958
8.772 -1.0865
12.403 -0.2261
avg 4.564 0.339 109.677 -3.166 2208.188 49.659
stdev 3.431 1.982 23177 6.795 1511.846 62.665
avg+stdev 7.995 2.321 132.854 3.629 3720.034 112.324
avg-stdev 1.133 -1.643 86.499 -9.960 696.342 -13.006
std error 0.990 0.572 9.462 2.774 503.949 20.888
ci+ 6.505 1.460 128.222 1.460 3195.927 90.601
ci- 2622 -0.783 91.131 -0.783 1220.448 8.718
»Ys o]U1g[e 2tno0 ) 0 0 0




Fracture Frequency Intervals
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Fracture Frequency Intervals
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Strain Localization

Grain Distribution Fault Damage Zone Boundaries
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8

Figure 4. (a) A thin section of dolomite taken ~5 m into our sampling transect, shown at 25x
ation, with a scale bar of 4mm. (b) Magnifying the box highlighted in Figure 4a, we see evidence
i g the dolomite may have experienced
; ractur i ith pr . . " £ 40 60 80
episodes of fracture and healing, in keeping with predictions from the dynamic model of fault zone V % V oU
evolution. (c) Grains are resolved and analyzed by calculating the optimal gray-scale threshold value via
Otsu’s [1979] method in Image J. The Otsu [1979] threshold is the value that minimizes the gray-scale

variance within the foreground and background. Fault-normal distance (1'11)

Grain Size Distribution (D,)
D, = grain size/grain density
D, ~ 2 (fault core)
Frost et al., 2009
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Strain Localization
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Fracture variations on a fault

cross section
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Conclusions

 Research produced a methodology for
reliably defining fracture/damage zone
boundaries using linear piecewise
regressions and AIC

e Background, transition and FID fracture
sets produce unigue CFF slope responses

* Predictable fracture frequency distributions
among varying geologic settings

o Strain localization controls fracture
formation during fault initiation

Background Methods Results Discussion
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