Imaging Techniques in Seismic Geomorphology*

Jim Bock¹ and Vladimir Rybakov²

Search and Discovery Article #42120 (2017)**
Posted August 14, 2017

*Adapted from oral presentation given at AAPG Rocky Mountain Section Annual Meeting, Billings, Montana, June 25-28, 2017

**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

¹IHS Markit, Denver, CO (jim.bock@ihsmarkit.com)
²IHS Markit, Houston, TX

Abstract

Pattern recognition has long been a key to our understanding of geologic landforms and depositional regimes. Channels, dunes, reefs, debris flows, and karst regions all exhibit various geomorphic patterns that provide insight into their origins. In fact, much of the success or failure associated with a geologic investigation depends on our ability to identify and classify various depositional and/or erosional patterns. For the geophysicist interested in reconstructing ancient landforms hidden within his or her 3D seismic amplitude data, there are many challenges that need to be addressed in order to accurately image the associated patterns. To begin with, the frequency content of traditional seismic data may not be appropriate for resolving certain geologic features. Subtle lithologic changes are not always apparent to the interpreter using traditional seismic data. And variably dipping seismic reflectors can often obscure the original depositional patterns required for in-depth analysis.

The purpose of this discussion is to highlight and discuss various imaging techniques in seismic geomorphology. Many different seismic attributes and spectral decomposition techniques are often able to enhance and bring out subtle features and/or lithologic changes that are still hidden within a traditional seismic amplitude display. Flattening and various slicing techniques can be used to help unravel complexities related to non-uniform horizons. Volume co-rendering of differing attributes can provide additional insights as compared to a single attribute. And finally, voxel body picking allows the interpreter to focus in on a specific range of attribute values which are useful in defining geobodies.

References Cited

Posamentier, H.W., 2000, Seismic stratigraphy into the next millennium; a focus on 3D seismic data: AAPG Annual Convention, New Orleans, LA, April 16-19, 2000, A118.
Imaging Techniques in Seismic Geomorphology

RMS AAPG

Jim Bock, jim.bock@ihsmarkit.com
Vladimir Rybakov, vladimir.rybakov@ihsmarkit.com
Seismic Geomorphology

- Study of buried landforms and depositional features using various 3D seismic imaging techniques.
- Imaging techniques focus on identifying “FLTs”
 - Amplitude anomalies
 - Linear features
 - Geologic

Submarine fan system with turbidite channels, Forties Field, North Sea
Common imaging techniques

- Horizon attributes
- Interval attributes
- Seismic attributes
- Time and horizon slicing
- Perspective rendering
- Opacity rendering
- Voxbody interpretation
- Color Bar selection/animation
- Pseudo cube and RGB blending
Horizon Attributes

- Examination of horizon reflections using a variety of attributes
- Reveal different geologic characteristics of feature of interest
- Predict lithology
Horizon Attributes
Salt Dome, Gulf of Mexico

Azimuth of Max Curvature

Curvedness
Horizon Attributes

Salt Dome, Gulf of Mexico

Frequency

Amplitude
Interval Attributes

- Analysis of a stratigraphic slab (interval).
- Good for Subtle features that are difficult to interpret/pick

Presenter’s notes: Attributes may include amplitude, frequency, zero crossings, number of samples within an specified amplitude range along with other various waveform attributes.
Presenter’s notes: Two examples of interval attribute images from the western Canada sedimentary basin. (a) Interval attribute of a Cretaceous channel; the attribute calculates the number of zero crossings over a 35 ms interval; (b) Absolute amplitude attribute showing two pinnacle Devonian reefs; attribute determines the peak amplitude over a 60 ms interval.
Presenter’s notes: **Geometric:**
At each trace geometric attributes are calculated by scanning adjacent traces and computing various characteristics (dip, continuity, etc.). Initially thought to help with stratigraphic interpretation, but they have been found to be beneficial in recognizing depositional features and related lithology.

Instantaneous:
Calculated for each sample along a trace.
The basis for the computation of most instantaneous attributes is the complex trace model of the seismic wavelet consisting of the real part and imaginary part.

Wavelet:
Similar to instantaneous but they are computed at the peaks of the instantaneous wavelet envelope.

Spectral Decomp:
Separate volume for each sub-band
Layer thickness determinations
Stratigraphic variations
DHI characteristics (e.g. attenuation)
Spectral Decomposition – Trace sub-bands by Octaves

5 Hz
6.6 Hz
8.7 Hz
11.4 Hz
15.1 Hz
19.9 Hz
26.2 Hz
35.5 Hz
45.5 Hz
60 Hz
Geological Uses of Seismic Attributes

- Depositional Environment
- Bedding indicators
- Unconformities
- Continuity/discontinuity
- Lithology
- Fault detection
- Fractures
- Hydrocarbon indicators
- Absorption
- Porosity

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Local</th>
<th>Depositional Environment</th>
<th>Bedding Indicators</th>
<th>Unconformities</th>
<th>Continuity/Discontinuity</th>
<th>Lithology</th>
<th>Fault Detection</th>
<th>Fractures</th>
<th>Hydrocarbon Indicators</th>
<th>Absorption</th>
<th>Porosity</th>
</tr>
</thead>
</table>
Reconnaissance Techniques

- **Time Slices:**
 - horizontal stratigraphy

- **Horizon Slices:**
 - Non-parallel reflections
Reconnaissance Techniques

- Parallel Stratigraphy – DJ Basin, CO
Presenter’s notes: Two examples of interval attribute images from the western Alberta Canada sedimentary basin.
Presenter’s notes: When slices reveal the presence of features of interest in map view, it is essential to examine the feature in cross section to confirm that what has been observed is stratigraphic rather than structural in origin, and that the feature is not a seismic data acquisition or processing artefact.
3d Perspective Rendering

- View an interpreted horizon in 3d perspective to bring out features.
3d Perspective Rendering

• View an interpreted horizon in 3d perspective to bring out features.
Opacity Rendering

- Make unwanted features transparent...peer through a volume and see specific elements with a certain amplitude range.

Karst induced feature: Boonesville Area, North Central Texas
Opacity Rendering

- Make unwanted features transparent...peer through a volume and see specific elements with a certain amplitude range.

32 Sub Band Instantaneous Dip

Lower Cretaceous D Sand Channels: DJ Basin, CO
Voxbody Interpretation

• Picking of connected voxels with user selected attribute amplitude range
• Geo-body picking

https://en.wikipedia.org/wiki/Voxel

Lower Cretaceous D Sand Channels, DJ Basin, CO
Colorbars

- Color bar selection and optimization

Lower Cretaceous D Sand Channels, DJ Basin, CO
Color bars

- Color bar animation
- Subtle features “appear” with rotating color bar

Hidden Feature: Western Canadian Sedimentary Basin
Pseudo Cube

- Set of horizons sharing same coordinates
- Horizons come from different SD cubes
- Horizons shifted in respect to each other
- Can be animated

Presenter’s notes: The concept of the Pseudo Horizon Cube stems from the idea that it is easier for the human eye to recognize patterns through dynamically changing, animated set of images than from the static one. One way to implement this concept in Kingdom is to create a set of horizons (that could either be autopicked on 3D seismic data, or simply created from “time” slices) that share the same (x, y, t) coordinates, but come from different Spectral Decomposition cubes. We also need to shift these horizons with respect to each other by changing the t coordinate by utilizing Kingdom calculator, so that we obtain the following set of Spectral Decomposition slices.
Pseudo Cube

• Set of horizons sharing same coordinates
• Horizons come from different SD cubes
• Horizons shifted in respect to each other
• Can be animated
RGB Blending

- Blending of three spectral decomposition bands:
 - Red
 - Green
 - Blue

- Enhances ability to recognize channels
Summary

- Understanding depositional systems using 3D seismic data analysis
- Identification and visualization of discrete depositional elements
- Analytical techniques:
 - Horizon and interval attributes
 - Seismic attributes
 - Time and horizon slicing
 - Perspective and opacity rendering
 - Voxbody interpretation
 - Color bar selection and animation
 - Pseudo cube and RGB blending
Presenter’s notes: The study of depositional systems in time and space has benefited greatly from analyses of 3D seismic data. Through a combination of plan views and section views, discrete depositional elements can be identified and visualized, and ultimately interpreted with regard to paleogeography, temporal evolution and lithology. This approach constitutes an integration of seismic geomorphology (i.e. plan views) and seismic stratigraphy (i.e. section views). Interpretation of 3D seismic volumes can involve a variety of analytical techniques ranging from mapping, visualizing and characterizing attributes of seismic horizons, to performing amplitude extractions from seismic slices, to characterizing seismic attributes of seismic intervals. Knowledge of map view expression of a range of depositional elements as well as a sound understanding of stratigraphic architecture is essential for this approach. From an exploration perspective, the identification of depositional elements facilitates lithology prediction because most depositional elements have a somewhat predictable distribution of rock types.

Acknowledgements and references

• Seismic data from
