The Impact of Slope Topography on Sediment Partitioning and Depositional Architecture in a Deepwater Lower Slope Setting*

Richard J. Wild1, Rachel Healy2, David Hodgson2, and Stephen Flint3

Search and Discovery Article #42114 (2017)**
Posted August 7, 2017

*Adapted from oral presentation given at AAPG 2017 Annual Convention and Exhibition, Houston, Texas, United States, April 2-5, 2017
**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

1Statoil ASA, Trondheim, Norway (rwild@statoil.com)
2School of Earth and Environment, University of Leeds, Leeds, United Kingdom
3School of Earth, Atmospheric & Environmental Sciences, University of Manchester, Manchester, United Kingdom

Abstract

Seismic reflection datasets of slope and base-of-slope systems are widely employed to resolve stratigraphic and architectural features and improve characterization and prediction of sediment delivery to the deep basin. Here, detailed outcrop studies integrated with core and well log data from Unit 5 of the Permian Skoorsteenberg Formation in the Karoo Basin, South Africa reveal important stratigraphic and architectural features (seismic- and sub-seismic scale) of channel and fan systems on a variable slope profile. The interpreted stepped-slope morphology is characterized by spatial and temporal changes in depositional facies and architecture, channel aspect ratio and stacking pattern. Key interpreted depositional environments include channels and overbank deposits, channel-lobe transition zones (CLTZ), frontal splays and lobes, and hemipelagic drape complexes. These architectural features reflect a combination of active and relatively passive sediment supply systems. Channel incision results from knickpoint migration headward from a relative increase of slope gradient while deposition of frontal splays and lobes is associated with a reduction in gradient and confinement. The CLTZs represent areas where flow confinement decreases abruptly, and are characterized by an assemblage of erosional and depositional features. Preferential accumulation of sediment and ‘healing’ of the slope is believed to reflect the deceleration of sediment gravity flows as they encountered lower-gradient steps and partial (flow stripping) or full confinement. We speculate that changes in the equilibrium profile and slope morphology also caused variations in the amount and rate of erosion with increased incision where knickpoints cut through bathymetric highs in an attempt to establish a graded profile. This exhumed slope succession provides an opportunity to constrain the stratigraphic and spatial distribution of this critical part of a deep-water system and emphasizes the role topography plays in partitioning sediment on siliciclastic continental slopes. Importantly, studies such as this facilitate the development of predictive models for application to sub surface datasets and are of particular relevance when predicting reservoir presence and quality in areas poorly constrained by wells and seismic.
Selected References

The Impact of Slope Topography on Sediment Partitioning and Depositional Architecture in a Deepwater Lower Slope Setting

Wild, R.J.1, Healy, R.2, Hodgson, D.M.2, and Flint, S.S.3

1Statoil Exploration Research, Trondheim, Norway; rwild@statoil.com
2School of Earth and Environment, University of Leeds, United Kingdom
3School of Earth, Atmospheric & Environmental Sciences, University of Manchester, United Kingdom
Understanding sediment partitioning in lower slope setting

• Slope modifications, either by uplift or subsidence, sediment flux and processes influence the depositional style and architecture in terms of both character and morphology

• Depositional and / or erosional style on the slope is determined by accommodation
 − Concept of equilibrium profile

• Changes in the equilibrium profile (EP) create or destroy accommodation
 − It is the response of the depositional system to these changes that governs many aspects of their architectural development

• Unit 5, Skoorsteenberg Fm., Tanqua Karoo
 − Integrate outcrop and well datasets to investigate stratigraphic variability of the slope to basin floor transition and identify representative depositional sequences and architectures, stacking patterns and net-to-gross distributions
 − Exhibits spatial and temporal variability that reflect subtle changes in the depositional gradient and accommodation
Understanding sediment partitioning in lower slope setting

Prather et al., 2017

Adeogba et al., 2005

Step 2

Multiple headward-eroding channels

Fluid-escape pockmarks

Stacked lobes or “transient fan”

Deptuck et al., 2012
Tanqua depocentre and Hangklip study area
Tanqua depocentre stratigraphy

- Permian, early foreland basin
- Several thousand km of walked out key surfaces, many with dGPS control
- Over 50 km of cumulative measured sections
- 12 fully cored wireline research boreholes
- Extensive helicopter and drone photography
- Unit 5, lower slope to base of slope depositional environment
Tanqua depocentre stratigraphy

- Permian, early foreland basin
- Several thousand km of walked out key surfaces, many with dGPS control
- Over 50 km of cumulative measured sections
- 12 fully cored wireline research boreholes
- Extensive helicopter and drone photography
- Unit 5, lower slope to base of slope depositional environment

S

Long-term slope accommodation above grade (incision and bypass)

SE

SE

Kookfontein Fm.

Slope accommodation below grade (slope dominated by accretion)

Bypass

BOS

Slope accommodation at or near grade (mixed bypass and aggradation)

Groot Hangklip
Klein Hangklip
Roosterberg
Pienaarsfontein
Vaalberg
Bitterberg / SL 1

Shelf / shelf edge
Mid-upper slope
Lower slope
Base slope / basin floor
Candidate maximum flooding surface
Candidate sequence boundary

Classification: Internal © Statoil ASA
Klien Hangklip, west facing

~35m

~250m
Klien Hangklip

<table>
<thead>
<tr>
<th>Lithofacies number</th>
<th>Lithology</th>
<th>Sedimentary structures</th>
<th>Turbidite divisions</th>
<th>Bounding surfaces</th>
<th>Thickness</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sl 4</td>
<td>Structureless sandstone</td>
<td>Massive, local parallel termination. Local scours and fill. Dewatering fabrics.</td>
<td>Tz</td>
<td>Sharp to erosive base. Sharp top. southwards</td>
<td>0.4-0.2 m</td>
<td>Sheet and channel geometries</td>
</tr>
<tr>
<td>Sl 5</td>
<td>Lag</td>
<td>Olistostrome supported</td>
<td>-</td>
<td>Sharp to erosive base. gradational to sharp top</td>
<td>Up to 0.5 m</td>
<td>Lenticular pockets. Local scours and fill</td>
</tr>
</tbody>
</table>

30m
Klien Hangklip, north facing
Klien Hangklip, east facing

- Characterized by channel complex
- Stratigraphic evolution in depositional style and architecture
- Erosionally confined basal part
 - Composite basal erosion surface commonly overlain by lag / bypass facies
 - Complex fill style reflecting multiple episodes’ erosion and deposition
- Weakly confined upper part
- Low to moderate sinuosity
Drooge Kloof, south facing

~50m

~1km
Drooge Kloof, south facing
Drooge Kloof

- Common climbing ripple- and upward steepening climbing ripple-laminated sandstone, stoss-side preserved climbing ripples and sigmoid bedforms
Waterfall

~20m

~150m
Rapid flow deceleration and aggradation

- When sedimentation rate exceeds the rate of erosion at the ripple reattachment point, the stoss-side deposition is preserved and aggradational bedforms develop (Allen, 1973)
- High climb angle and stoss-side preservation in ripple-laminated sandstones are interpreted to represent rapid aggradation rates
- Results from flow deceleration
Deformation structures, slope ‘creep’

- Dominated by sheets, commonly exhibit coarsening- and thickening-upwards motif
- Laterally off-set, low relief channels and scours
- De-watering, loading and ‘creep’, supports rapid deposition, pos. influence of gradient
Groot Hangklip

~25m

29 mars 2017
Classification: Internal
© Statoil ASA
Groot Hangklip

~55m

Classification: Internal

© Statoil ASA
Groot Hangklip

~25m

~250m

~55m
Groot Hangklip

- Limited evidence for master container
- High N:G, structureless and de-watered sandstones
- Limited preservation of fine grained sediments

Modified from Wild et al., 2005

Classification: Internal
29 mars 2017
© Statoil ASA
Summary of depositional facies and architecture
Summary of depositional facies and architecture

- Characterized by channel complex
- Stratigraphic evolution in depositional style and architecture
 - Erosionally confined basal part
 - Weakly confined upper part
- Low to moderate sinuosity
- Change in equilibrium profile results in evolution from net erosion (and bypass) to aggradation
Summary of depositional facies and architecture

- Characterized by channel complex
- Stratigraphic evolution in depositional style and architecture
 - Erosionally confined basal part
 - Weakly confined upper part
- Low to moderate sinuosity
- Change in equilibrium profile results in evolution from net erosion (and bypass) to aggradation

- Dominated by sheet-like geometries, coarsening- and thickening-upward packages
- High climb angle and stoss-side preservation in ripple-laminated sandstones
- De-watering, loading and ‘creep’
- Laterally off-set, low relief channels and scours
- Reduction in confinement, rapid flow deceleration and aggradation, CLTZ to frontal splay
- Repeated cycles of thin-beds and channelization reflects evolving slope profile
Summary of depositional facies and architecture

- Characterized by channel complex
- Stratigraphic evolution in depositional style and architecture
 - Erosionally confined basal part
 - Weakly confined upper part
- Low to moderate sinuosity
- Change in equilibrium profile results in evolution from net erosion (and bypass) to aggradation

- Dominated by sheet-like geometries, coarsening- and thickening-upward packages
- High climb angle and stoss-side preservation in ripple-laminated sandstones
- De-watering, loading and ‘creep’
- Laterally off-set, low relief channels and scours

- Reduction in confinement, rapid flow deceleration and aggradation, CLTZ to frontal splay
- Repeated cycles of thin-beds and channelization reflects evolving slope profile

- Limited evidence for master container
- High N:G, structureless and de-watered sandstones
- Limited preservation of fine grained sediments
- Aggradational lower unit, ev. of punctuated episodes of erosion and deposition in upper unit

- Perched accommodation / partially ponded
- Stratigraphic evolution of depositional style in response to changes in equilibrium profile (decrease in local gradient, reducing accommodation)?
Summary

• Unit 5, Skoorsteenberg Fm., Hangklip localities
 - The interpreted variable or stepped-slope morphology is characterized by spatial and temporal changes in depositional facies and architecture, channel aspect ratio and stacking pattern
 • Depositional setting defined by distinct assemblages
 • Key interpreted depositional environments include channels and overbank deposits, channel-lobe transition zones (CLTZ), frontal splays and lobes
 • Preferential accumulation of sediment and ‘healing’ of the slope is believed to reflect the deceleration of sediment gravity flows as they encountered lower-gradient steps and partial (flow stripping) or full confinement

• Provides insight on critical factors influencing sediment storage on the slope and lower slope and / or bypass to the deeper basin
 - Develop predictive concepts to aid reservoir prediction and characterization
• Stratigraphic and combined traps in base of slope setting are under-explored and have the potential to contain significant YTF both in new plays and mature basins
 - Variable slope topography and resultant impact on depositional systems is positive with respect to the play / prospectivity
Thank you for your attention