Inter-Disciplinary Work Flow Process to Achieve Profitable Results in Delaware Basin Resource Plays*

John Polasek¹

Search and Discovery Article #42108 (2017)**
Posted July 24, 2017

*Adapted from oral presentation given at 2017 AAPG Division of Professional Affairs, Delaware Basin Playmaker’s Forum, Midland, TX, February 22, 2017
**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

¹VP of Subsurface Characterization Group, Occidental Petroleum Company, Houston, TX, United States (john_polasek@oxy.com)

Abstract

For Permian resource plays, Oxy has deployed a strong inter-disciplined linkage or team co-dependency because of the numerous reservoir properties that are required and shared to help build and develop the most profitable inventory for the current oil price environment. The evaluation involves a major integrated effort between Geologists, Geophysicists, Petrophysicists, Basin Modelers, Reservoir, Completion and Drilling Engineers as well as Data Analytics. This process has helped improve well performance and capex focus particularly in Oxy’s Delaware Basin properties. Several examples of this integrated workflow will be shown with the premise of profitable production growth through technical and execution excellence.
Occidental Petroleum
Inter-Disciplinary Work Flow Process to Achieve Profitable Results in Delaware Basin Resource Plays

John Polasek - VP Subsurface Characterization Group
AAPG-DPA - Delaware Basin Playmaker Forum
Midland, Texas
February 22, 2017
The Largest Operator, Producer & Acreage Holder in Permian

- **Total Permian Acreage:**

 5.3 MM gross, 2.5 MM net acres

- **Business Area Acreage:**

 Resources - 1.4 MM net acres
 EOR - 1.1 MM net acres

Oxy – Permian and World Leader in CO₂ EOR

- Inject 1.9 billion cubic feet of CO₂ per day
- Operate 31 CO₂ EOR projects (74% of EOR production employs CO₂ technology)
- Half of Permian CO₂ floods are operated by Oxy

Source: Oil & Gas Journal 2014 Biennial EOR Survey, Oxy 2016 update
Permian Basin is Oxy’s Core Domestic Asset

EOR Business
- 2016 YE Net Production - 144 MBOEPD
- 1.1 million net acres
- 1.9 Billion BOE remaining in reserves and resources

Midstream
- 14 processing plants
- ~3,000 miles of pipeline
 - CO₂ pipelines
 - Oil infrastructure and pipelines
 - Marketing business

Resource Business
- 2016 YE Net Production – 124 MBOEPD
- 1.4 MM net acres in Resource Plays
- 0.3 MM net acres associated with 11,650 drilling locations
- >20% of current inventory BE at < $50 oil

* Based on 4Q16 metrics
Basic Workflow to Evaluate Unconventional Plays

Geological Understanding: Review Basin Geology to Identify Unconventional Targets to focus on and pursue

Appraisal: Integrate Petrophysics, G&G, RE to Accelerate Learnings (Good Porosity, low clay, High Oil Saturation, Fracable, Source Rocks)

Basin Analysis: Integrate Geochemistry to Determine best source rocks (Thick, High TOC, Thermally Mature, High Pressure, Oil Prone)

Development: Integrate Reservoir, Completion and Production Engineering for commercial development of play (Fracture Holding, High OOIP, High EUR per well, repeatable benches)

Unconventional Play Evaluation involves a major integrated team effort between Geologists, Petrophysicists, Geophysicists, Reservoir Engineers, Completion & Production Engineers.
Build Regional Source Rock Understanding from Bone Spring through Wolfcamp Intervals

- Basin wide thickness map of Wolfcamp “A” organic rich, source rock interval
- Average 6 month Hz production BOE’s normalized to 1000’ lateral length

Basin-wide Source Rock understanding of all organic mudstone benches, what works, what doesn’t, what’s critical, how to map, all help Oxy with high-grading their vast acreage position.
Source Rock Thermal Maturity and Production Performance

- Thermal Maturity calculated from pyrolysis, Tmax, confirmed with VRE
- “Peak-oil” maturity window is (0.9 to 1.1 VRE)
- Increasing GOR’s (six month production) is consistent with increasing source rock maturity

Organic richness, maturity and storage capacity are key elements to understanding Oxy acreage and a focused strategy towards economic development of this acreage,
Integrating Source Rock Understandings into Petrophysics

Source rock geochem from rock data is integrated into the petrophysical analyses of well log data to confirm prospective benches and help in choosing landing zones.

Source Rock Richness & Maturity Maps ➔ Petrophysics, Ranking & Landing

Bench 1, TOC (avg)

Bench 2 Geochem

Bench 2 Geochem

Bench 1, VRE (Maturity)
There is a strong inter-discipline linkage as there are numerous reservoir parameters that are gathered, calculated & shared for overall decisions on capital commitment.
UCR Petrophysics – Putting it All Together: Core, Cuttings, NMR, ECS, Fluid Properties, Pressure etc. to predict OOIP/OGIP

Black dots are cuttings or core measurements that show proper calibration with the petrophysical analysis. Fluid calibration shown by the Pressure, Temperature, Bo & Bubble Pt. (PVT) help to calculate OOIP / OGIP per bench.
UCR Petrophysics – Fractionation of Bulk Hydrocarbon to Determine Oil Mobility & Bench Contribution

Fractionation of Bulk Hydrocarbon via Downey Method determining OOIP from Pyrolysis (S1) Data
(Search and Discovery Article #40764, 2011)
UNC Petrophysics – Determine Relative Permeability & Fractional Flow to Wolfcamp Benches

Correlation

<table>
<thead>
<tr>
<th>Wolfcamp A</th>
<th>Wolfcamp B</th>
<th>Wolfcamp C</th>
<th>Wolfcamp D</th>
<th>Wolfcamp E</th>
</tr>
</thead>
<tbody>
<tr>
<td>11000</td>
<td>11400</td>
<td>11800</td>
<td>11600</td>
<td>12000</td>
</tr>
</tbody>
</table>

Resistivity

Mud Gas ppm

Water Saturation

Total Porosity

Water / Oil Ratio

Relative Permeability

Fractional Flow to Water

Corey Method (cap press & Rel perms) history match at reservoir conditions to help determine source of water production which is difficult to measure in mudstones.

Wolfcamp A

- [Graph showing data for Wolfcamp A]

Wolfcamp B

- [Graph showing data for Wolfcamp B]

Wolfcamp C

- [Graph showing data for Wolfcamp C]

Wolfcamp D

- [Graph showing data for Wolfcamp D]

Wolfcamp E

- [Graph showing data for Wolfcamp E]
Actual Wolfcamp A water production is close to predicted from Corey Method is another cross check to calculated storage properties from the Petrophysical Analyses.
UNC Petrophysics - Input to run Advanced Hydraulic Fracturing Model

Stress Profile Inputs:
- Dipole Sonic Logs
- Overburden
- Pore Pressure
- Strain (Poisson’s Ratio)
- Poroelastic & anisotropy effects

Static Young’s Modulus Input:
- Dipole Sonic Logs
- Impact hammer hardness
- Triaxial compression tests

Model Outputs:
- Hydraulic frac geometry (half frac length and stimulated height) for well spacing and production history modeling
- Proppant coverage and concentration
- Fracture conductivity

By calibrating closure stress (DFIT’s, MDT ‘s) & static Young’s Modulus (Geomechanics) results in frac model improvements to height, half length, conductivity and proppant placement.
Bench ranking based on combined Petrophysics, Frac model geometry, OOIP calculations, Reservoir parameters etc, we can reasonably rank benches.
Seismic Inversion Derived Lithology & its Influence along Hz wellbore trajectory

Calibrate Stimplan Model to microseismic events

Less Constrained Frac Height (~600’) w/ poss. natural fracture influence

High Stress Layers More Constrained Frac Height (~350’)

High Al

Low Al

AI Inversion derived Lithology, with microseismic and well path. Lithology understanding & possible natural fractures may influence frac height growth, SRV and total fluid production.
Seismic Inversion for Reservoir Mapping and Field Development Planning

Seismic Inversion, Frac model h x w, reservoir flow unit understanding & mapping help drive FDP
Appraisal - Wolfcamp “A” Bench TX Delaware Basin
3D Seismic, Natural Fractures & Well Performance in Over-pressured Wolfcamp Bench

Seismic AI inversion illustrating bench landing & performance in over-pressured section. Pressure supported by logs, DFIT & Frac Data.

Seismic interval velocities correlates with overpressure in certain areas, the overpressuring correlates with active oil generating kitchen and reservoir energy and enhanced well productivity.
Structure Map along two Wolfcamp “A “ NE-SW Laterals

Seismic helps with mapping landing zone structural mapping to confirm lateral placement.
Seismic Ant-Tracks correlate with fracture zones in certain areas, the fracture zones correlate with hydrocarbon migration pathways.
Wellbore trajectory with 3D Seismic Ant-Tracks

Seismic Ant-Tracks correlate with fracture zones in certain areas, the fracture zones correlate with hydrocarbon migration pathways.
Seismic Ant-Tracks correlate with fracture zones in certain areas, the fracture zones correlate with hydrocarbon migration pathways.
• Oldest stand alone wells fit with high B-Factor
• Production quickly fell below expectations
• Continued decline shows high b factors unrealistic
• Wells approaching minimum flowing bottom pressure
• The appropriate B-Factor can only be resolved with production time

DCA does not use physics of unconventional reservoirs, therefore, there can be low confidence in the EUR

DCA is first step, advanced analyses including RTA, PVT, Petrophysical, frac and numerical simulation models all help construct a “technical type curve” which representing the average field performance for bench development.
The “Technical” Type curve represents the average field performance (P50) for that particular bench, for that particular area and includes total stand alone and development wells.
Multi-disciplined efforts also include Data Analytics as a predictive tool towards profitable growth.
Optimized Results from Oxy’s Integrated Efforts

2nd Bone Spring
- Improved landing zone
- Focusing on high-graded acreage
- Optimized frac design
- Increased SRV
- Enhanced flowback practices

3rd Bone Spring
- 3.5X

Play Leading Bone Spring Oil Results
- Average normalized 30-day oil peak rate 2016 Bone Spring NM wells

Well performance has improved over time
- Improved landing zone
- Focusing on high-graded acreage
- Optimized frac design
- Increased SRV
- Enhanced flowback practices

Only through dedicated integrated efforts that Oxy continues to improve well performance over time across several resource plays, particularly in New Mexico
Many thanks to the following Oxy teams:

- Reservoir Characterization
- Unconventional Petrophysics
- Appraisal & Subsurface Specialties
- Unconventional Stimulation Design
- Reservoir Engineering, Analysis & Interpretation
- Data Analytics
- Delaware Business Units

Thank You