PSCombining Sequence Stratigraphy with Artificial Neural Networks to Enhance Regional Correlation and Determination
of Reservoir Quality in the “Mississippian Limestone” of the Mid-Continent, USA*

Elizabeth Elium!, G. Michael Grammer!, and Matthew Pranter?

Search and Discovery Article #42091 (2017)**
Posted June 19, 2017

*Adapted from poster presentation given at AAPG 2017 Annual Convention and Exhibition, Houston, Texas, United States, April 2-5, 2017
**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

'Oklahoma State University, Stillwater, Oklahoma, United States (elizabeth.elium@okstate.edu)
2University of Oklahoma, Norman, Oklahoma, United States

Abstract

The “Mississippian Limestone” of the U.S. Mid-Continent region is a complex, highly variable, mixed carbonate and siliciclastic system that serves as an
important unconventional hydrocarbon reservoir. Recent studies have focused on developing and applying a sequence stratigraphic framework to enhance
the understanding of depositional facies and reservoir architecture, and to enhance regional and sub-regional correlation. Throughout the region, the
system is characterized by a 3-fold hierarchy of probable 2nd, 3rd and 4th order sequences and high frequency sequences. The third order sequences have
proven to be the most reliable for correlation purposes due to distinct wireline log signatures that have been confirmed by ground-truthing the logs to
multiple cores and tying to facies stacking patterns. An integrated approach utilizing well logs, sequence stratigraphy, core analysis, and 2D modeling is
used to correlate and assess the reservoir quality of the “Mississippian Limestone” at both regional and sub-regional scales. Nine cored wells are used to
create an artificial neural network (ANN) which is tested with k-means clustering methods to create a lithofacies log. The ANN is tested and trained to
determine the lithofacies present based on well log signatures alone, in an attempt to pick up small scale changes in this heterogeneous carbonate system.
This lithofacies log is applied to non-cored wells throughout the study area, which spans several counties, in order to predict the lithofacies in areas
without core data. 2D geostatistical models are created from this data in order to correlate sequence stratigraphic frameworks, facies changes, and
reservoir distribution in the Mississippian Limestone across the region.
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Geologic Background

Abstract

The “Mississippian Limestone” of the U.S. Mid-Continent region is a complex, highly variable, mixed
carbonate and siliciclastic system that serves as an important unconventional hydrocarbon reservoir. Recent
studies have focused on developing and applying a sequence stratigraphic framework to enhance the
understanding of depositional facies and reservoir architecture, and to enhance regional and sub-regional
correlation. Throughout the region, the system is characterized by a 3-fold hierarchy of probable 2nd, 3rd and
4th order sequences and high frequency sequences. The 3rd order sequences have proven to be the most
reliable for correlation purposes due to distinct wireline log signatures that have been confirmed by
ground-truthing the logs to multiple cores and tying to facies stacking patterns.

An integrated approach utilizing well logs, sequence stratigraphy, core analysis, and 2D modeling is used to
correlate and assess the reservoir quality of the “Mississippian Limestone” at both regional and sub-regional
scales. Previous studies have developed sequence stratigraphic frameworks for nine cored wells in the study
area. The cores will be used to train an Artificial Neural Network to recognize patterns in wireline log data and
determine the lithofacies present based on well log signatures alone. Once log-based facies interpretations are
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The “Mississippian Limestone” was
deposited across a regionally extensive
carbonate platform in shallow marine
conditions, on a distally steepened
ramp (20-30° south latitude).

Dip-Oriented Cross Section

Previous work in the “Mississippian Limestone” has identified sequences of
progradational clinoforms dipping towards the basin (SW) through chronostratigraphic
correlation. These sequences range in size from ~50ft to ~300ft thick and can be
correlated through wireline logs.

Within the larger-scale sequences are smaller, less continuous packages which further
compartmentalize the reservoir both laterally and vertically.

Left: Paleodepositional model of the Mid-Continent during the
Early Mississippian. Modified from Gutschick & Sandberg (1983)
and Chaplin (2010).
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