Macroseeps and Microseeps: A History of Unconventional Approach to Exploration Since the Start of the Petroleum Age*

Steven A. Tedesco¹

Search and Discovery Article #42058 (2017)**
Posted May 1, 2017

*Adapted from oral presentation given at AAPG 2017 Annual Convention and Exhibition, Houston, Texas, United States, April 2-5, 2017
**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.
¹Running Foxes Petroleum Inc., Englewood, Colorado, United States (s.a.tedesco14@runningfoxes.com)

Abstract

Oil and gas macro-seeps were the initial exploration tool that started the Petroleum Age. Numerous oil macroseeps had been known to several cultures for centuries around the globe and early development targeted these locations aggressively. Fairly quickly almost all macroseeps in accessible areas were exploited causing new methodologies to be developed. In the 1920s, microseepage technologies began developing in various forms to be used in conjunction with other exploration tools such as surface mapping for subsurface structures. With the advent of seismic, microseep methodology took a backseat role. However, in the 1970s to 1990s there was resurgence in the technologies both on land and on sea. The success rate of microseepage methods during this time period increased due to highly sensitive, reliable and accurate laboratory equipment, better understanding of soil chemistry, more rigorous sampling methods and more robust analytical analysis utilizing computers. In the 1990s to present day the shift in the industry from conventional to unconventional reservoirs that covered large areas the use of microseep methods as an exploration tool diminished domestically US and Canada but internationally it is still used extensively in under developed or remote basins. These methods are a tool in a toolbox. This paper will present examples of successes, track records of some of the methods and discuss the place of these methods going forward in the industry.

Selected References

Macroseeps and Microseeps: A History of Unconventional Approach to Exploration Since the Start of the Petroleum Age

Dr. Steven A. Tedesco
Atoka Inc.
4B Inverness Court East
Englewood, CO 80112
Oil and gas macro-seeps were the initial exploration tool that started the Petroleum Age. Numerous oil macroseeps had been known to several cultures for centuries around the globe and early development targeted these locations aggressively. Fairly quickly almost all macroseeps in accessible areas were exploited causing new methodologies to be developed. In the 1920s microseepage technologies began developing in various forms to be used in conjunction with other exploration tools such as surface mapping for subsurface structures. With the advent of seismic, microseep methodology took a backseat role. However, in the 1970s to 1990s there was resurgence in the technologies both on land and on sea. The success rate of microseepage methods during this time period increased due to highly sensitive, reliable and accurate laboratory equipment, better understanding of soil chemistry, more rigorous sampling methods and more robust analytical analysis utilizing computers. In the 1990s to present day the shift in the industry from conventional to unconventional reservoirs that covered large areas the use of microseep methods as an exploration tool diminished domestically US and Canada but internationally it is still used extensively in under developed or remote basins. These methods are a tool in a tool box. This paper will present examples of successes, track records of some of the methods and discuss the place of these methods going forward in the industry.
Hydrocarbon Seepage

Macroseepage illustrate the presence of hydrocarbons in a basin.

Macroseepage
- large concentrations of migrated hydrocarbons;
- visible oil staining and odor;
- migrate laterally via porous, permeable breccia zones of faults, injectites or vents;
- can be detected visibly at the surface.

Microseepage
- chemically detectable at the surface;
- concentrations lower than macroseepage;
- no visible hydrocarbons or odor;
- migrate vertically via grain boundaries;
- diagenetically altering the rocks through which they pass.

- Onshore
 - Visible seeps
 - Mud volcanoes

- Offshore
 - Mud volcanoes
 - Visible seeps
 - Pockmarks
 - Gravity coring
Macroseeps
Seeps

- The petroleum industry is first encountered in the archaeological record the petroleum industry is first found in Hit (Iraq) on the banks of the Euphrates river. The oil seep is known locally as The Fountains Of Pitch. Asphalt was quarried to be used as mortar between building stones as early as 4000 BC. It was also used as a waterproofing agent for baths, pottery and boats (Purdy, 1957).

- The Babylonians caulked their ships with asphalt.

- In Mesopotamia around 4000 B.C., a tarry crude known as bitumen – was used to caulk ships, a setting for jewels and mosaics, and an adhesive to secure weapon handles.

- Egyptians used it for embalming, and the walls of Babylon and the famed pyramids were held together with it.

- Moses' basket and Noah's Ark being 'pitched' inside and out with it. Natural deposits of asphalt occur in pits or lakes as residue from crude petroleum that has seeped up through fissures in the earth.

- Bitumen was the Roman name for an asphalt used as a cement and mortar.
• 347 AD In China oil wells drilled to 800 feet using bamboo poles.

• 900s Sumatrans and pre-Columbian Indians all believed that crude oil had medicinal benefits.

• 1264 Mining of seeps in medieval Persia witnessed by Marco Polo.

• 1300’s Oil gathered in Baku was already being exported to other countries of the Middle East.

• 1500s Oil mines in Poland for street lamps.

• 1539 First oil exported from Venezuela (in 1539) was intended as a gout treatment for the Holy Roman Emperor Charles.

• 1594 Oil wells dug by hand to 115 feet in Persia.

• 1597 Tribes living along the banks of the river Ukhta in the far northern Timan Pechora region gathered oil from the surface of the river and used it as a medicine and a lubricant.

• 1657 Jesuit missionaries noted that in the land of Cats heavy thick water that ignites and the savages cover themselves with it to anoint and grease their bodies.

• 1702, Tsar Peter the First ordered the setting up of Russia’s first regular newspaper, Vedomosti. The paper’s first issue carried a story about the discovery of oil on the surface of the river Sok in central Russia, while later issues carried similar stories about oil seeps elsewhere in Russia.

• 1735 Oil sands mined in Alsace France at the Pechelbronn Field.

• 1600’s to 1800s Indians and settlers noted seeps in Western Pennsylvanian and New York. The Seneca tribe traded oil and as the oil became known as “Seneca Oil” for $20 a quart.
Seeps

- 1802 A well drilled for brine in the Kanawha Valley of West Virginia produces oil instead.
- 1814 The Thorla-McKee well in Ohio produces oil as well as brine.
- 1821 The natural gas industry is born when William Hart dug a well to 43 feet into a gas shale and piped methane into the local inn, Fredonia, New York. Several more wells were drilled in the area.
- 1828 A brine well near Burkesville, Kentucky produced oil in large quantities as well.
- 1848 First modern oil well is drilled in Asia on the Aspheron Peninsula northeast of Baku by F.N. Semyenov – The Start of the Petroleum Age.
- 1849 Dr. Abraham Gesner (Canadian) distills kerosene from oil.
- 1850 Oil hand dug in Los Angeles, California to produce lamp oil by General Andreas Pico.
- 1854 First oil wells drilled in Bobrka, Poland.
- 1854 Gas well in Stockton, California drilled to light the Stockton, courthouse.
- 1857 Michael Detz invents the first kerosene lamp that forces whale oil lamps off the market.
- 1858 Canadians drill their first oil well in Ontario, Canada.
- 1859 Colonel Edwin Drake drills the first oil well in the US at Titusville, Pennsylvanian near a seep.
Seeps

• In the literature it is cited 80% of the major and minor oil fields have some sort of seep associated with them;

• Iran, Iraq, Algiers, Libya, Europe, North America, South America, Southeast Asia, China, India, etc. all have seeps that are associated in some cases with major fields;

• In the US seeps are associated with Spindletop, Signal Hill, Kern River, Lima-Indiana Trend, Florence Field, etc.

• Seeps were the main tool for several decades

Edward L. Doheny, California oil entrepreneur in Mexico

Lazaro Cardenas del Rio, president of Mexico from 1934 to 1940. In 1938, Cárdenas ordered the expropriation of all oil companies in Mexico
Seeps

• The figure to the right is a comparison of oil profiles from reservoirs from being produced fields in Gulf of Mexico reservoirs to oil collected from deep cores in the same area.

• There is similarity in pattern but the core samples show degradation as would be expected.
Generally Accepted Concept of the Trap

• The trapping of oil in a reservoir (poor or good) is the presence of a seal around the edges and over the top;
• The seal is usually perceived to be an impermeable shale, carbonaceous mudstone, siltstone, salt, anhydrite, dense carbonate, etc.
• The seal is assumed to be ductile and prevents flow of hydrocarbons through it;
• Shale industry has proved there is minor fracturing, micro-pores, micro-unconformities, etc.
Microseeps

Hydrocarbons in the soil cause a reducing environment that changes the chemistry. These changes can be detected and evaluated to define an area that may be a possible petroleum target.

Surface geochemistry is based on the principal of hydrocarbons leaking to the surface through the process of vertical migration.

The hydrocarbons can be detected or there by-products such as increases in iodine.

These hydrocarbons migrate to the soil from below.

The seal rock above a petroleum reservoir has minor fractures or disconformities that allow minor amounts of hydrocarbons to escape.

Presenter’s notes: Model of microseepage. Note the classic profiles over the target reservoir that is leaking hydrocarbons in the subsurface. What complicates this model in the real world is what are the migration pays. As we will demonstrate, is that the migration paths that are generally unknown above any reservoirs seem to be vertically migrating. The more complex the geology by faulting and wrenching can cause leakage in a larger area. However, the importance of iodine survey is that it can help determine whether a seismic or geologic target has potential hydrocarbons in it. If none is seen then it is over 95% chance it will result in a dry hole.

American Association of Petroleum Geologists 2017 Annual and Exhibition 100 Years Houston, Texas
Results of microseepage at the surface

- Presence of C₂ and greater hydrocarbons in the soil horizons;
- Reducing environment;
- Increase in trace and major elements in and around the area of seepage;
- Increase in gamma content on the periphery of the seepage area;
- Increase in carbonate minerals;
- Increase in magnetic minerals;
- Significant changes in Eh and pH in and around the seepage area;
- Presence of petroleum eating bacteria;
- Plumes of seeping hydrocarbons in the air detectable by radar;
- Increase in halogen.

ALL THE SAME THINGS CAUSED BY MACROSEEPS
Early Years – Microseeps

1920s tp 1940s

- G. Laubmeyer of Germany in 1929 submitted patent to detect hydrocarbons;
- Soviets began conducting surveys in 1930 to 1932 began conducting soil gas surveys;
- 1930s and 1940s saw US companies use these methods with mixed results. Analysis was limited to methane and ethane due to the equipment of the day. Mobil Oil patents radar technology to map gas plumes;
- 1940s saw the Russians have notable success using these methods.
1950s and 1960s

- 1950s saw the resurgence of surface geochemistry as several successes were the result of the work by Crown Petroleum and Geochemical Surveys. Crown concluded that surface geochemistry was six times more effective than any other method used at the time. Phillips files a patent using bugs in soils to detect hydrocarbons;
- Horovitz Labs claimed 23 new fields out of 39 surveys done;
- Geochemical Surveys claimed that 38 new fields were discovered out of 160 surveys done;
- The methods used at this time in the use were radiometrics, delta C, microbial and soil gas;
- Major and foreign oil companies picked up the methods again. However, they had mixed results;
- At this time Horovitz work concluded that most of the anomalies that led to discoveries were not halo in nature.

Eland Field Post-Drilling Stark County, North Dakota, Willistond Basin
1970s and 1990s

• 1970s through the 1990s saw a surge in the use of surface geochemical methods especially after the crash in 1982 to 1986;

• The number of service companies exploded and new methods were introduced and developed;

• This new methods were iodine, helium, micromagnetics, trace and major elements and various soil methods;

• Numerous success were noted and the number of articles in various journal substantially increased;

• Laboratory technology also advance with the introduction of the mass spectrometer, XRD and XRF equipment. Also the portable nature of some of the laboratory equipment.
2000s and beyond

- The advent of first coalbed methane and tight gas sand plays diverted the industry away from conventional reservoirs;
- With the addition of shale gas plays on a basin wide scale followed by oil shale further diverted most US and Canadian Companies away from onshore conventional. The method reverted to being a small independents methodology;
- The advent of 3D seismic further caused the decline in the number of users of surface geochemistry;
- Where the methods did grow is in remote or poorly developed basins around the world;
- Even with the recent decline in industry drilling and many shale plays being uneconomic there has been to date no resurgence in these methods.
Recent evidence of support for depletion of hydrocarbons over time - macroseeps
A 2009 study by the Woods Hole Oceanographic Institution and the University of California, Santa Barbara, was “the first to quantify the amount of oil residue in seafloor sediments that result from natural petroleum seeps off Santa Barbara, California.” This graphic depicts what happens to the oil from a natural seep.

“The area around Santa Barbara is very geologically active, because of the movement of the San Andreas and other faults. Extensive faulting or rupturing in the Earth allows oil and gas from subterranean reservoirs to seep up to the seafloor and ultimately into the ocean and to the atmosphere. But some oil solidifies to create asphalt volcanoes.” – Woods Hole Oceanographic Institution.
There’s an oil spill every day off the coast of Santa Barbara, Calif., where oil is seeping naturally from cracks in the seafloor into the ocean. Lighter than seawater, the oil floats to the surface. Some 20 to 25 tons of oil are emitted each day. (Photo by Dave Valentine, University of California, Santa Barbara)

Oil and methane bubble to the ocean's surface from natural seeps off Coal Oil Point, near Santa Barbara, California. (Photo courtesy of Dave Valentine, UCSB)
American Association of Petroleum Geologists 2017 Annual and Exhibition 100 Years Houston, Texas
The Petroleum to Digital Age
Summary

• Macroseeps were the initial exploration tool in the petroleum business;
• Microseeps are the micro version of macroseeps. While controversial there is significant evidence all reservoirs leak;
• Presence of seepage while not always be indicative of a commercial accumulation but it makes the explorationist feel a whole lot better;

 • MACRO AND MICROSEEPS ARE THE ONLY DIRECT EXPLORATION TOOL FOR HYDROCARBONS.
Exploration – leaping into the unknown for fun and profit based on limited understanding of the subsurface
References

https://www.sciencenewsforstudents.org/article/south-americas-sticky-tar-pits
http://www.dnr.louisiana.gov/assets/TAD/education/BGBB/2/ancient_use.html
http://www.pbs.org/wnet/extremeoil/history/prehistory.html
http://www.sjvgeology.org/history/

Berge, 2011, Recognition and meaning of hydrocarbon seeps, AAPG, Search and Discovery article 40759;

Parry, 2015, Oil Seeps – the only Direct Hydrocarbon Indicator, Force, “Underexplored Plays” Stavanger, April 8/9th;

Tedesco, 1994, Surface geochemistry in Petroleum Exploration, Chapman and Hall