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Abstract 

 

Vitrinite reflectance is a standard method for measuring the thermal maturity of sedimentary rocks and kinetic models of vitrinite reflectance 

commonly used to constrain paleothermal histories in basin and petroleum system modeling. EASY%Ro is a one such kinetic model. 

EASY%Ro is based on the concept that reflectance is related to the chemical composition of vitrinite phytoclasts. It was derived from an earlier 

model, Vitrimat, which modeled the compositional evolution of vitrinite based on both laboratory experiments and natural maturation trends. 

EASY%Ro uses distributions of activation energies that spread the maturation reactions over a wide range of thermal exposure. A variety of 

alternatives to EASY%Ro has been proposed, including unpublished versions that use fewer second-order reactions to speed computation and 

extend the predictions to higher reflectance. Some workers have proposed models based on single first-order reactions and power-law reaction 

models. Others have proposed models that take into account suppression of reflectance by co-generated oil and overpressure within petroleum 

source rocks. The objectives of this paper are to review these models and supporting observations in order to assess the reliability of 

EASY%Ro and how modifications might improve reliability of the method. 
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Statement of Importance 

Vitrinite reflectance is one of the most important parameters used 

to calibrate paleothermal histories 

 

All models of vitrinite reflectance are approximations that require 

validation at the time-temperature conditions of application 

 

Numerous variations of Arrhenius-based models are available 

 

Which is the most reliable, and why?   
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Genetic relationships among vitrinite 
reflectance models 
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Complex materials require a reactivity 
distribution 
Various approaches: 

Isoconversional 

 

 
 

Power law in time 
 

 

 Gamma distribution in A 

 
Pseudo nth-order reaction 
 

 

 

 Gamma distribution in A 

 power law in t 

 
Continuous E distributions 

Gaussian, Weibull, etc. 

 
Discrete distributions 

E only and E with ln(A)=a+bE  

S I N T E R I N G  O F  H Y D R O X Y  A PAT I T E  
N T H - O R D E R  G A U S S I A N  E  D I S T R I B U T I O N  

B U R N H A M ,  C H E M .  E N G .  J .  1 0 8 .  4 6 - 5 0  ( 2 0 0 5 )  

Reaction order interpreted as distribution of diffusion lengths 

E distribution interpreted as range of diffusion energy barriers 
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EASY%Ro is a simplified model calibrated to 
the atomic H/C correlation of VITRIMAT 

VITRIMAT elemental 

balance equations and 

reflectance correlations 

 

 

 

 

 

correction 
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Pseudo nth-order reactions reduce the number 
of required energy channels 

Vitrimat2 simplified the reaction network 
Used pseudo-2nd-order reactions  

(same energy distribution for CO2 and H2O; no oil) 

30% less computer time than Easy%Ro while still matching the van Krevelen diagram 
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Vitrinite reflection is often “suppressed” in 
source rock intervals 

Is it due to overpressuring in the 

generating interval? 

Experimental studies indicate that 

pressure can be important, but probably 

not enough 

 

Is it because of interaction of vitrinite 

interaction with bitumen?  

 Extraction does not significantly affect 

reflectance, so interaction is not as 

simple as swelling (Barker et al., 

2007) 

 

Is it due to different kinds of vitrinite? 

Laboratory data suggests it can be 

 

Price and Barker, J. Petr. Geol. (1985) 
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A lot rides on 
this point 

 

Pressure effects are present, but small and 
inconsistent at geological pressures 
Huang (1996) found a large difference between open and closed pyrolysis but little 

difference between 0.5 and 2 kbar 

Landais et al. (1994) found little effect between 0.5 and 4 kbar 

Uguna (2012) found pressure slightly inhibited reflectance between 0.2 and 0.9 kbar 

Della Torre (1997) and Le Bayon et al. (2011) found either inhibition or acceleration of 
reflectance increases depending on the pressure and reflectance range 

 

Le Bayon et al.,  

Org. Geochem. 2011 

 

Relevant geological 

pressures are <2 kbar 
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Hydrous and confined pyrolysis experiments 
say source is more important than pressure 

Coal samples tend to have higher reflectance for the same pyrolysis conditions  
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Variations in oxygen elimination kinetics were 
explored through Vitrimat modifications 
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Potential improvements should also consider 
the compositional relationship to reflectance 
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Vitrimat correlations are the best overall in the 

literature, but some improvements are still warranted 

Mathews et al., Fuel Processing Technology (2014) 
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Multiple workers have noted a dogleg shape 
not captured by Easy%Ro 

Ritter et al., Petr. 

Geoscience (1996) 

 

 

 

 

 

Suggate, J. Petr. Geol. 

(1998), using data from 

Teichmüller (1979) 

 

 

 

 

 



14 

Nielsen et al. (2016) propose Basin%Ro as an 
improved calibration of Easy%Ro 
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Temperature calibration for Aurora-1 well,  
Alaska North Slope 

PetroMod
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Basin%Ro agrees better with measurements and 
predicts slightly different source rock maturities 
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Basin%Ro agrees better with measurements and 
predicts slightly different source rock maturities 
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Basin%Ro agrees better with measurements and 
predicts slightly different source rock maturities 
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The best model is yet to come 

Nielsen et al (2015) correctly observe that Easy%Ro agrees better with 

high-pressure experiments  

 Due to the greater weight given to them by Burnham and Sweeney 

Even so, %Easy%Ro could use some improvement for agreement with 

laboratory experiments 

 Preliminary calculations suggest a frequency factor of 1x1014 s-1 would provide 

a better simultaneous match with lab and geo data 

However, scatter in laboratory experiment indicates there are significant 

differences among vitrinites in different samples 

 Almost certainly a different calibration will be required for vitrinite in coals and 

oil prone organic matter 

 Each type has at least 0.1%Ro variation among different workers for similar 

organic matter 
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Summary 

Numerous vitrinite reflectance kinetic models have been developed to address 

various issues 

 Computational time 

 Effects of pressure 

 Vitrinite suppression 

 

Computational speed can be enhanced by using fewer second-order reactions 

 

Much more good calibration data is available now compared to the late 1980s 

 

Vitrinite reflectance versus depth (temperature, maturity) has a sharper dog-

leg than calculated by Vitrimat H/C and Easy%Ro 

 

Vitrinite suppression is more likely due to differences in deposition conditions 

and maceral interactions than pressure 
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