Pre-Messinian Petroleum System and Trapping Style, Offshore Western Nile Delta, Egypt*

Mostafa Monir¹ and Omar Shenkar¹

Search and Discovery Article #30489 (2017)**
Posted February 20, 2017

*Adapted from oral presentation given at AAPG/SPE Africa Energy and Technology Conference, Nairobi City, Kenya, December 5-7, 2016
**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

¹BG Group, Wholly owned subsidiary of Royal Dutch Shell, Maadi, Cairo, Egypt (omar.shenkar@rashpetco.com)

Abstract

Exploration in the offshore Nile Delta province has revealed several hydrocarbon plays. Deep marine Turbidites is considered one of the most important plays for hydrocarbon exploration in the Nile Delta. These turbidites vary from submarine turbidite channels to submarine basin floor fans. An integrated exploration approach was applied for a selected area within West Delta Deep Marine (WDDM) Concession offshore western Nile Delta using a variety of geophysical, geological and geochemical data to assess the prospectivity of the Pre-Messinian sequences. This paper relies on the integration of several seismic data sets for a new detailed interpretation and characterization of the sub-Messinian structure and stratigraphy based on regional correlation of seismic markers and honoured the well data. The interpretation focused mainly on the Oligocene and Miocene mega-sequences. The seismic expression of stratigraphic sequences shows a variety of turbidite channel/canyon systems having examples from West Nile delta basin discoveries and failures. The approach is seismically based focusing on seismic stratigraphic analysis, combination of structure and stratigraphic traps and channels interpretation. Linking the geological and geophysical data together enabled the generation of different sets of geological models to reflect the spatial distribution of the reservoir units. The variety of tectonic styles and depositional patterns in the West Nile delta provide favourable trapping conditions for hydrocarbon generations and accumulations. The shallow oil and gas discoveries in the Pliocene sands and the high-grade oils in the Oligo-Miocene and Mesozoic reservoirs indicate the presence of multiple source rocks and an appropriate conditions for hydrocarbon accumulations in both biogenic and thermogenic petroleum systems. The presence of multi-overpressurized intervals in the Pliocene and Oligo-Miocene Nile delta stratigraphic column increase the depth oil window and the peak oil generation due to decrease of the effective stress. Fluids have the tendency to migrate from high-pressure zones toward a lower pressure zones, either laterally or vertically. Also, hydrocarbons might migrate downward if there is a lower pressure in the deeper layers. Well
data and the available geochemical database have been integrated with the interpreted seismic data to identify potential areas of future prospectivity in the study area.

Reference Cited

Pre- Messinian petroleum system and trapping style, offshore Western Nile Delta, Egypt.

Mostafa Monir [1], Omar Shenkar [2]

[1] Exploration Geologist BG group wholly owned subsidiary of Royal Dutch Shell, Maadi, Cairo, Egypt
[2] Exploration Geophysicist BG group wholly owned subsidiary of Royal Dutch Shell, Maadi, Cairo, Egypt
Table of Contents

1. Introduction & Area of Study
2. Nile delta generalized stratigraphic column
3. Regional structural framework
4. Data base (Seismic and well data)
5. Methodology
6. Pre-Messinian Petroleum System
 - Reservoir Potential
 - Hydrocarbon Types and Source rock
 - Trapping style and Trapping mechanism
7. Summary and Conclusion
8. Acknowledgement
Table of Contents

1. **Introduction & Area of Study**

2. Nile delta stratigraphic column

3. Regional structural framework

4. Data base (Seismic and well data)

5. Methodology

6. Pre-Messinian Petroleum System
 - Reservoir Potential
 - Hydrocarbon Types and Source rock
 - Trapping style and Trapping mechanism

7. **Summary and Conclusion**

8. **Acknowledgement**
Introduction and Area of Study

- WDDM concession is located in the western basin offshore Nile Delta.
- 100Km to NE of Alexandria
- Water depth varies from 150 – 1200m.
- WDDM area is about 1366Km2
Table of Contents

1. Introduction & Area of Study
2. Nile delta stratigraphic column
3. Regional structural framework
4. Data base (Seismic and well data)
5. Methodology
6. Pre-Messinian Petroleum System
 - Reservoir Potential
 - Hydrocarbon Types and Source rock
 - Trapping style and Trapping mechanism
7. Summary and Conclusion
8. Acknowledgement
Nile Delta Stratigraphy

- Hydrocarbon fields / discoveries are proved at all levels
- Oligocene is the main source rock in the Nile Delta
- Significant biogenic gas potential within the Pliocene – Pleistocene interval
- Few penetrations of the Pre-Tertiary sequence
- The Deepest onshore well penetrated the Upper part of Jurassic Sequence
- The deepest offshore well reached a TD of c.a. 7200m (in the Oligocene)

Table: Nile Delta Tertiary stratigraphy

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Age</th>
<th>Formation</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleistocene-Holocene</td>
<td></td>
<td>Bilqas / Mit Ghamr</td>
<td>South</td>
</tr>
<tr>
<td></td>
<td>Late</td>
<td>Piacenzian</td>
<td>El Wastani</td>
</tr>
<tr>
<td></td>
<td>Early</td>
<td>Zanclean</td>
<td>Kafr El Sheikh</td>
</tr>
<tr>
<td>Oligocene</td>
<td>Late</td>
<td>Messinian</td>
<td>Abu Madi Rosetta</td>
</tr>
<tr>
<td></td>
<td>Early</td>
<td>Tortonian</td>
<td>Qawasim</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wakar</td>
</tr>
<tr>
<td>Mioocene</td>
<td>Middle</td>
<td>Serravallian</td>
<td>Sidi Salim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Langhian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower</td>
<td>Burdigalian</td>
<td>Qantara</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aquatinian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Late</td>
<td>Chattian</td>
<td>Tineh</td>
</tr>
<tr>
<td></td>
<td>Early</td>
<td>Rupelian</td>
<td></td>
</tr>
<tr>
<td>Eocene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paleocene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cret. & Jurassic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nile Delta Tertiary stratigraphy mainly consists of clastic deposits.
Table of Contents

1. Introduction & Area of Study
2. Nile delta stratigraphic column
3. **Regional structural framework**
4. Data base (Seismic and well data)
5. Methodology
6. Pre-Messinian Petroleum System
 - Reservoir Potential
 - Hydrocarbon Types and Source rock
 - Trapping style and Trapping mechanism
7. Summary and Conclusion
8. Acknowledgement
The major events controlled the petroleum system in Egypt are:

- Opening of the New-Tethys (Late Triassic-Early Jurassic rifting).
- Late Jurassic – Early Cretaceous passive margin-rifting
- Closure of New-Tethys with right lateral transpression and compressional tectonic during Late Cretaceous, resulted in reverse faults and series of NE-SW folds (Syrian arc System).
- Gulf of Suez rifting (Oligocene-Early Miocene)
- Levant Transform (Dead Sea) during Miocene and Pliocene
- Late Miocene (Messinian) crisis and deposition of evaporites and super valleys.

Modified after Abdel Aal, et.al, 2001
Table of Contents

1. Introduction & Area of Study
2. Nile delta stratigraphic column
3. Regional structural framework
4. Data base (Seismic and well data)
5. Methodology
6. Pre-Messinian Petroleum System
 - Reservoir Potential
 - Hydrocarbon Types and Source rock
 - Trapping style and Trapping mechanism
7. Summary and Conclusion
8. Acknowledgement
Seismic Vintages and Well Data

- 2014 Acquisition
- Total 2010
- 2006 Acquisition

- Pre-Messinian well
- Messinian well

Locations:
- Sapphire-Deep
- Mars-1
- Kala-1
- Mina-1
- Memphis-1
- Raven
- Taurus Deep
Table of Contents

1. *Introduction & Area of Study*
2. *Nile delta stratigraphic column*
3. *Regional structural framework*
4. *Data base (Seismic and well data)*
5. **Methodology**
6. *Pre-Messinian Petroleum System*
 - Reservoir Potential
 - Hydrocarbon Types and Source rock
 - Trapping style and Trapping mechanism
7. *Summary and Conclusion*
8. *Acknowledgement*
Methodology and Workflow

1. WDDM Prs-TM 2014 3D Seismic data volumes loaded and QC-ed
2. Pre-Messinian Mega sequence Seismic mapping
3. Regional Attributes extraction proportional windows
4. Identifying regional fairway at different levels
5. Draw the channel polygons on depth surfaces & faults
6. High-grade channels on structure
7. Time-depth conversion
8. Defining channels on structure
9. Reservoir parameters Analysis
10. Volumetric calculations
11. Risk assessment

Flowchart:
- WDDM Prs-TM 2014 3D Seismic data volumes loaded and QC-ed ➔ Pre-Messinian Mega sequence Seismic mapping ➔ Regional Attributes extraction proportional windows ➔ Identifying regional fairway at different levels ➔ Draw the channel polygons on depth surfaces & faults ➔ High-grade channels on structure ➔ Time-depth conversion ➔ Defining channels on structure ➔ Reservoir parameters Analysis ➔ Volumetric calculations ➔ Risk assessment
Table of Contents

1. Introduction & Area of Study
2. Nile delta stratigraphic column
3. Regional structural framework
4. Data base (Seismic and well data)
5. Methodology
6. Pre-Messinian Petroleum System
 - Reservoir Potential
 - Hydrocarbon Types and Source rock
 - Trapping style and Trapping mechanism
7. Summary and Conclusion
8. Acknowledgement
Reservoir Potential
Reservoir Potential

Spectral decomposition (RBG composite)

RMS Amplitude extraction

Serravalian 1

Serravalian 2

Serpent
Table of Contents

1. Introduction & Area of Study
2. Nile delta stratigraphic column
3. Regional structural framework
4. Data base (Seismic and well data)
5. Methodology
6. Pre-Messinian Petroleum System
 - Reservoir Potential
 - Hydrocarbon Types and Source rock
 - Trapping style and Trapping mechanism
7. Summary and Conclusion
8. Acknowledgement
Hydrocarbon types and source rock

West Nile delta basin comprises various hydrocarbons types; Biogenic dry gases, thermo-genic dry, wet gas and condensate, Mixed Biogenic, thermogenic gases and Oil.
Hydrocarbon types and source rock

- The majority of Nile delta oil occurrences are located close to hinge zone.
- Two oil discoveries in WDDM are located in both the hanging wall and foot wall of Rosetta fault.
- They are believed to be charged from Oligocene sources or deeper Source rock in Cretaceous or Jurassic.
Hydrocarbons migrate from source rocks to shallower reservoirs via deep seated faults or/and gas chimneys. Or laterally when the reservoir lays within the source rock intervals.

- Isolated Pliocene channels have mainly biogenic gas.
- Isolated Miocene and Oligocene channels have mixed thermogenic and biogenic gases.
Table of Contents

1. Introduction & Area of Study
2. Nile delta stratigraphic column
3. Regional structural framework
4. Data base (Seismic and well data)
5. Methodology
6. Pre-Messinian Petroleum System
 - Reservoir Potential
 - Hydrocarbon Types and Source rock
 - Trapping style and Trapping mechanism
7. Summary and Conclusion
8. Acknowledgement
Trapping style and trapping mechanism.

- The main Structural element which affects on WDDM concession is Rosetta fault and NDO-anticline and its fault system.
- The trapping mechanism is a combined structural and stratigraphic elements.
- Miocene and Oligocene channels are draped over anticlinal features forming two way dip and two way stratigraphic traps.
- Lessons Learnt from previous failures and nearby successes
 - Avoid high relief and breaching structures.
 - Use Geochemical data to understand the overlaying shallower Pliocene gas field fluid composition and type.
 - The presence of pure BIOGENIC gas field on top of un-faulted Messinian is a key driver to de-risk the trap effectiveness in WDDM.
Trapping styles

Different structural styles, low relief anticlinal features associate with the late Miocene compressional regime.
Table of Contents

1. Introduction & Area of Study
2. Nile delta stratigraphic column
3. Regional structural framework
4. Data base (Seismic and well data)
5. Methodology
6. Pre-Messinian Petroleum System
 – Reservoir Potential
 – Hydrocarbon Types and Source rock
 – Trapping style and Trapping mechanism
7. Summary and Conclusion
8. Acknowledgement
Summary and Conclusions

• An integrated exploration approach was applied for a selected area within WDDM Concession offshore western Nile Delta.

• The interpretation focused mainly on the Oligocene and Miocene sequences. The seismic expression of stratigraphic sequences shows a variety of turbidite channel/canyon systems having examples from West Nile delta basin discoveries and failures.

• Few offset Pre-Messinian wells in the vicinity of or nearby WDDM such as; Sapphire deep-1, Memphis, Habbar, Rosetta-NW1 and Raven. These wells has been considered in reservoir parameters, depths and Chance Of Success.

• Most of the Offshore Nile Delta hydrocarbons discoveries share a common source rock of Tertiary age.

• The variety of tectonic styles and depositional patterns in the West Nile delta provide favorable trapping conditions for hydrocarbon generations and accumulations. The trapping mechanism in WDDM concession Pre-Messinian prospects is a combined structural and stratigraphic traps.
Acknowledgement

Rashid Petroleum Company (RASHPETCO), EGPC, EGAS, BG Egypt and PETRONAS are acknowledged for granting permission to publish this work.

* BG Group is now a wholly owned subsidiary of Royal Dutch Shell