Using Seismic Inversion and Seismic Stratigraphy as a Combined Tool for Understanding a Small Scale Turbidite System: Gola Field, Pannonian Basin, Croatia*

Domagoj Vukadin¹ and Kristina Čikeš¹

Search and Discovery Article #20412 (2017)**
Posted December 26, 2017

**Datapages © 2017. Serial rights given by author. For all other rights contact author directly.

¹Exploration & Production Division, INA Ltd Industrija nafte, Zagreb, Croatia (domagoj.vukadin@ina.hr)

Abstract

Goal of the study was to identify and define small scale turbidite system of upper Miocene retrogradational depositional system in the Drava basin, using seismic inversion and seismic stratigraphy tools, in combination with attribute analysis. The studied seismic volume covers a part of the Drava depression and includes the Gola gas field. The quality of data is crucial for interpreting geology through seismic; therefore, methods of increasing the seismic resolution while preserving the amplitude spectrum and dominant dip were applied. Seismic-stratigraphy-based analysis greatly assists in the geological constraint or "geovalidation" of interpreted seismic stratigraphic relationships and provides potentially critical insight into stratigraphic and structural problems of nonunique interpretations (Pigott, 2010). The fact that the variability of reflectors’ characteristics indicated lithology changes within a horizon was taken into consideration. For such small-scale turbidites, every seismic reflector contains more than one facies not only horizontally, but also vertically oriented. Therefore, every seismic reflection and its variations in amplitude spectrum in the Gola gas field were interpreted as a horizon. Channels were interpreted in such a way that their relative geological age was respected. The sequence of deposition was studied by Wheeler scenes; depositional system was interpreted; and the lithology was estimated and correlated with well data. Seismic facies were singled out and interpreted. Additional attributes were analysed to confirm obtained results, such as spectral decomposition attribute, that was used to indicate changes of facies, and coherence attribute which was used to define the main channel flow direction and depositional infill. Results gained from these analyses, such as continuity and spatial distribution of turbidite channels were verified by a seismic inversion (method of deriving seismic parameters, such as acoustic impedance, from reflection seismic data constrained by borehole data (e.g., Sheriff and Geldart, 1995)). Acoustic impedance inversion is applied for reservoir-quality characterization; generally lower acoustic implies better reservoir properties, i.e., porosity. When unified, interpretations obtained from this workflow lead to an understanding of chronostratigraphic significance of seismic-reflection correlations, and allow a more detailed study of stratigraphic traps and small-scale turbidites.

Selected References

Using seismic inversion and seismic stratigraphy as a combined tool for understanding a small scale
turbidite systems: Gola field, Pannonian basin, Croatia

Domagoj Vukadin and Kristina Čikeš
1 INA Ltd – Industrija nafte, Croatia

INTRODUCTION

Goal of the study was to identify and define small scale turbidite system of Upper Miocene
continental rifting processes during syn-rift phase and alteration of lacustrine to marine sediments,
Finally compressional phase affected in the Pliocene. It resulted with more than 6000 m (Saic et al., 2003) of sediments produced in Drava depression. Conglomerates and sandstones of the Lower and Middle Miocene and Pannonian sandstones represent hydrocarbon reservoirs in the western part of Drava depression (Saffic et al., 2003) of sediments produced in Drava depression. Geological evolution and hydrocarbon potential of Drava depression is related to complex geology of southern Pannonian basin, i.e. North Croaan basin (Pavelić, 2001) during the Neogene and Quaternary.

Complex geological situation is a consequence of transpressional events in the Oligocene, as well as the compressional phase affected in the Pliocene. It resulted with more than 6000 m (Saic et al., 2003) of sediments produced in Drava depression. Conglomerates and sandstones of the Lower and Middle Miocene and Pannonian sandstones represent hydrocarbon reservoirs in the western part of Drava depression. Geological evolution and hydrocarbon potential of Drava depression is related to complex geology of southern Pannonian basin, i.e. North Croaan basin (Pavelić, 2001) during the Neogene and Quaternary. The complex geology of the Drava depression is a result of continental rifting processes during syn-rift phase and alteration of lacustrine to marine sediments, and finally compressional phase affected in the Pliocene. It resulted with more than 6000 m (Saic et al., 2003) of sediments produced in Drava depression. Conglomerates and sandstones of the Lower and Middle Miocene and Pannonian sandstones represent hydrocarbon reservoirs in the western part of Drava depression. Geological evolution and hydrocarbon potential of Drava depression is related to complex geology of southern Pannonian basin, i.e. North Croaan basin (Pavelić, 2001) during the Neogene and Quaternary.

RESULTS

Seismic facies were singled out and interpreted. Additional attributes were analysed to confirm obtained results, such as spectral decomposition attribute, that was used to indicate changes of facies, and coherence attribute which was used to define the main channel flow direction and depositional infill. Attribute analyses include similarity, spectral decomposition and RMS amplitude. Simplicity confirmed the direction of deposition and channel systems, a spectral decomposition gave detailed facies within a certain time window. Seismic facies were singled out and interpreted. Additional attributes were analysed to confirm obtained results, such as spectral decomposition attribute, that was used to indicate changes of facies, and coherence attribute which was used to define the main channel flow direction and depositional infill. Attribute analyses include similarity, spectral decomposition and RMS amplitude. Simplicity confirmed the direction of deposition and channel systems, a spectral decomposition gave detailed facies within a certain time window.

For the purposes of estimating the hydrocarbon saturation within certain turbidite flows, seismic inversion was used. Spatial distribution was confirmed by analysis of acoustic impedances. Seismic inversion was a final analysis which confirmed the results of seismic stratigraphy analyses. Correlation with the petrophysical parameters confirmed the best reservoir properties within the seismic facies representing the turbidite sediments.

CONCLUSION

When unified, interpretations obtained from this workflow lead to an understanding of chronostratigraphic significance of seismic reflection correlations, and allow a more detailed study of stratigraphic traps and small-scale turbidites. Furthermore, by combining these two separated methods and attribute analyses used for better seismic stratigraphic analysis, isolation of not only deposits as seismic anomalies was accomplished, but their petrophysical properties was attributed to them through geophysical characteristics.

REFERENCES

CONTACT INFO

Exploration & Innovation BD
Reservoir Engineering Department

Vukadin Đ.
domagoj.vukadin@ina.hr

Čikeš Kristina
krisna.cikes@ina.hr

1 INA Ltd – Industrija nafte, Croatia

Domagoj Vukadin and Kristina Čikeš
1 INA Ltd – Industrija nafte, Croatia

INTRODUCTION

Goal of the study was to identify and define small scale turbidite system of Upper Miocene
turbidite systems: Gola field, Pannonian basin, Croatia

RESULTS

Seismic facies were singled out and interpreted. Additional attributes were analysed to confirm obtained results, such as spectral decomposition attribute, that was used to indicate changes of facies, and coherence attribute which was used to define the main channel flow direction and depositional infill. Attribute analyses include similarity, spectral decomposition and RMS amplitude. Simplicity confirmed the direction of deposition and channel systems, a spectral decomposition gave detailed facies within a certain time window.

For the purposes of estimating the hydrocarbon saturation within certain turbidite flows, seismic inversion was used. Spatial distribution was confirmed by analysis of acoustic impedances. Seismic inversion was a final analysis which confirmed the results of seismic stratigraphy analyses. Correlation with the petrophysical parameters confirmed the best reservoir properties within the seismic facies representing the turbidite sediments.

CONCLUSION

When unified, interpretations obtained from this workflow lead to an understanding of chronostratigraphic significance of seismic reflection correlations, and allow a more detailed study of stratigraphic traps and small-scale turbidites. Furthermore, by combining these two separated methods and attribute analyses used for better seismic stratigraphic analysis, isolation of not only deposits as seismic anomalies was accomplished, but their petrophysical properties was attributed to them through geophysical characteristics.

REFERENCES