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Abstract

Hundreds of seismically imaged igneous sills were analyzed on modern large 3D seismic data sets in the undrilled deepwater segment of the
Morondava Basin, Madagascar. The age of these sills is assumed to be Turonian based on well penetrations on the shelf and in the nearby
onshore part of the basin. The sills are typically saucer-shaped, but other types, such tabular and transgressive sills were also documented.
Besides the large number of sub-volcanic intrusive complexes, a relatively small number of submarine paleo-volcanoes with associated lava
flows and hydrothermal vents were also mapped corresponding to an inferred Turonian unconformity. Like many other volcanic basins, where
the geometry of the sills has been analyzed in great detail, the vertical magnitude of the 4-way structural closures observed in the forced folds
above the sills is a function of the emplacement depth below the paleo-seafloor. Whereas individual sills may not provide very large forced
folds above them, a vertical stacking of several sills clearly provide large, compound structural traps with considerable vertical closure (up to
300 m) and moderately large areal extent (up to 75 km?).

Although the intrusive sills and associated hydrothermal vents may locally compromise the reservoir quality of pre-Turonian reservoirs in the
deepwater Morondava Basin, their positive impact for hydrocarbon trapping is far more significant. As the Cretaceous to Cenozoic deepwater
strata of the margin has a moderately uniform monoclinal dip to the west, with lots of stratigraphic trapping potential, the numerous complex
forced folds above the sills provide almost all the structural traps in this frontier basin. In addition to the 4-way closures within the Pre-
Turonian strata, differential compaction above the sill-related forced folds influenced the map-view geometry of deepwater sediment dispersal
on the margin, including Senonian-Paleocene turbidite fan systems.
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Regional context, wells, seismic database
Cretaceous (Turonian) magmatism in Madagascar
Turonian intrusions reflected in the onshore geology
3D reflections seismic observations of effusives and intrusives
Lack of regional impact on maturation by Turonian magmatism
Impact of Turonian sills on petroleum plays
Analogy with salt tectonics, i.e. salt versus sill tongues/sheets?
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Cretaceous magmatism in Madagascar

There are several Cretaceous
volcanic provinces in
Madagascar (in black and dark
green). The Morondava flood
basalt (CFB) province was
emplaced ca. 91-93 Ma ago,
during the Turonian.

Several lines of evidence dismiss
the mantle plume model
proposed in the 1990s for these
volcanics relating them to the
Marion hot spot.

The latest interpretations
suggest that Cretaceous
volcanism resulted from
reactivation of a lithospheric
scale shear zone due to plate
reorganisation that eventually led
to the break-up between
Madagascar and Greater India
(e.g. Bardintzeff et al., 2010)
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Offshore Morondava wells: volcanics in most wells
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Onshore ,,classic® sills, described previously as ,,dyke swarms*
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Vitrinite reflectance data (onshore and offshore)
No evidence for noticably higher heat flow during the Cretaceous igneous activity
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Seismic data sets, Grand Prix Block, offshore Morondava Basin
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2D data — regional TGS dataset from 2005 (35 km line spacing); + Base Tertiary Unc Depth

older (mid 70s) SEAGAP survey; shelfal 2d data, mostly from
1970s-80s

2010 3D Survey — 3200 km?

2015 3D Survey — 3014 km? full fold area, acquired July-Sept 2015.
Datasets useful for interpretation

On-board processing fast-track cube: October 27th 2015
Intermediate PSTM: 29th August 2016

Intermediate PSDM (Iteration 2) — 22nd August 2016

PSTM cubes using OMV pre-conditioned gathers (in-house product)
Final PSTM —21st November 2016

Final PSDM with Q-Tomo (3rd Iteration) — 20th December 2016
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Sills on the 3D northern 3D seismic, offshore Morondava Basin
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Hydrothermal vent complexes
confirm timing of intrusive activity (Turonian)

Vent complexes are located above sills and formed as a direct consequence of the intrusive event, formed by the explosive
eruption of gases, liquids and sediments

Just a few vent complexes identified on the southern Grand Prix (2015) data set — all at theTuronian level. As these form at the

paleo-seafloor during intrusive episodes, they provide additional support that the intrusives are Turonian in age (and older) e—"—"
Reservoir quality implications — Cenomanian-Turonian reservoirs were close to the sea floor during the intrusive events,

13| therefore the diagenetic effect of the hot mineralising fluids on the reservoirs thought to be limited gﬁ%



_dBETSIMBA 001

AMAKIA 001

Seismic Envelope




3D PSDM example -
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Most sills have distinct top
(peak) and base (trough)
reflectors suggesting
thicknesses on the order of
tens of meters

Some 100 sills were mapped
by auto-tracking top sill (peak)
horizons

Most sills appear to ramp up
preferentially basinward, to the
west, causing asymmetry
Note pronounced onlap (green
arrow) on the basinward flank
of the forced fold, post-dating
the intrusive period

meters subsea

PSDM XL 2640, in depth
(vertical exaggeration ~5x)
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Stacked sills mapped on 3D seismic

» Some 100 sills were mapped in a circa
3000 km? 3D area by auto-tracking top sill
horizons (peaks)

» Most sills are not isometric and saucer-

shaped but rather elongated in an W-E

direction, tongue-shaped and ramping up to
the W

Regional basinward tilt

» Locally the stacking of up to 5 sills can be
oberved (sill polygons on the map are

displayed with 80% transparency)
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Compound forced folds

» Multiple intrusive events can cause

17 |

fairly large four-way closures above sill
complexes (Magee et al., 2014)

In a deepwater basin, like the
Morondava Basin of Madagascar,
which would not have any other
hydrocarbon traps due to regional
monoclinal basinward dip (in the
absence of salt, shale or late-stage
structural inversion) this trapping style
becomes a critical element in the
petroleum system

C. Magee et al.

(a) f,- Initial infrusion and instantaneous fold growth
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(c) t,- Increased fold growth accommodating later magma pulses
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NB: Intrusion volume is to highlight different magma pulses,
not the distribution of magma from each pulse.

Fig. 13. (a) Inial intrusion of two thin sills generating two laterally adjacent but non-interfering forced folds. (b) Continued magma
flow into the two sills induces inflation and instigates a proportional increase in fold amplitude. Where the two folds interfere, their
lateral extent becomes pinned and the inflection point between them is uplifted; potentially allowing the two folds to merge into a
larger volume compound fold. (¢) Further intrusion may increase fold size and deform onlapping sediments deposited during the
previous phase of fold growth. Note that the fold amplitude becomes a function of multiple intruded sills and cannot be related w the
thickness of an individual intrusion. The length of the fold damum’s for each group highlight fold width.




WEST DEEPWATER PLAY TYPES, GRAND PRIX, MORONDAVA BASIN EAST

Deepwater play types

Grand Prix, offshore Morondava ’
~j PLIOCENE
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compaction within Paleocene,

secondary target

» Four-way closure due to differential

compaction within Senonian e =

(Santonian?), primary target (1)

CENOMANIAN

» Four-way closures in compound
forced folds within Cenomanian-

Turonian, primary target
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Turonian Green TWT
Cl 50ms

Near top Turonian
,Green‘“ horizon

Cenomanian-Turonian
forced folds have a
pronounced expression in
the time domain (left) and
are robust closures in
depth (right)

These closures are large
enough to provide
economic traps for the
deepwater setting (i.e.
average water depth of
about 1500 m)

Jano: 80 km?2
Akio: 66 km?2
Pepy:151 km?
Jombo: ~250 km?2
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Near top Turonian depth structure, Jombo Prospect cluster
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» Large compound forced fold structure 175-250 km? areal
closure (4690 m- 4740 m contour), crest @ 4490 m (~3000m
bml).

» Robust closures not sensitive to depth conversion, mapped
on high quality PSDM 3d data.

» Thick reservoir section ~500m thick

» Good potential for stacked pay analogous with Paleocene
reservoir systems, where laterally extensive shales
between between the fans can be mapped

Many of the intrusions stop at the base of the interpreted
reservoir package

» “Amoeba-shaped” complex structural closures are entirely
due to underlying Turonian sills
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PSDM XL 2640 across Jombo D, with ,,inflated” sill
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Near top Turonian depth structure, Jombo D segment

» Vertical closureis
~200 m for Jombo D
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Jombo D depth structure and ,,ver
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Santonian(?) fan, in compactional drape above Turonian forced fold
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Santonian(?) 4-way closures
Turbidites in four-way closures created by differential compaction

above Turonian structures
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WEST DEEPWATER PLAY TYPES, GRAND PRIX, MORONDAVA BASIN EAST

Deepwater play types om0 PROSPECT

Grand Prix, offshore Morondava

PLIOCENE

The importance of sills:

Combination traps due to differential [2===——=
compaction within Paleocene,
secondary target

Four-way closure due to differential
compaction within Senonian
(Santonian?), primary target

Four-way closures in compound
forced folds within Cenomanian-
Turonian, primary target

Other plays for the first well are
considered to be:

too complex (Oligocene strat traps)
smallish (Anaconda area contourites

too deep (Albian/Aptian clastics
between sills)
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Analogy with salt tectonics?... ,,Sill tongues*®
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Analogy with salt tectonics? Salt tongues/sheets, offshore Morocco
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Tari and Jabour (2012)
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ation of the interaction of two salt sheets to f

orm a salt canopy in the central part of the Moroccan salt
basin. As one salt sheet overrides the other, the sediments in between are getting trapped in an early-stage ouv

28 | asymmetric allosuture (sensu Dooley et al. 2012). Whereas the feeder for the overriding inboard salt sheet is within oMV
the plane of the seismic section, the feeder for the outboard sheet is not.
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Morondava Basin, Madagascar, exploration highlights/conclusions

Jombo D

» Short-lived magmatism (Turonian, ~93-91 Ma), compared to other volcanic
basins (West of Shetland, Rockall, etc.)

» Lack of regional impact on maturation by Turonian magmatism

» Without Turonian sills there would not be a trapping mechanism in the
Morondava basin

» Pronounced regional basinward tilt produced asymmetric sills

» Exceptional, “inflated” sills can alone account for large 4-way closures
without compounding effect.

» Sufficient vertical relief for closure to be enduring through time, resulting in
potential stacked pay

» Analogous with salt tectonics, i.e. salt versus sill tongues/sheets?
» The industry still has a “mental block” about magmatic basins
» This mental block could be cured by a discovery in the Morondava Basin!
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PSDM IL 3721 across Jombo D, with ,,inflated“ sill
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