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Abstract

An examination of the current distribution of oil shale resources, combined with paleogeographic reconstructions of the
lacustrine oil shale interval in the northwestern depocenter of the Uinta Basin, indicates that oil shale source rocks in the area
originally contained significantly greater organic richness. Thermal maturation in this deeply buried part of the basin has led to
the loss or depletion of a substantial portion of the original petroleum-generating potential of these source rocks. Some of this
loss of potential has led to the presence of unconventional petroleum resources, including tar sands and solid bitumens like
gilsonite, in the Uinta Basin. In-place oil shale resources of the Eocene Green River Formation were compiled and reported in
the recent U.S. Geological Survey assessment. These results have been used to define areas within the oil shale interval along
the deep structural trough of the basin that appear to be depleted in terms of Fischer assay oil yields (gallons of oil per ton of
rock) and in-place oil shale resource (barrels of oil per acre). The oil shale interval has also been established as the most likely
source for gilsonite deposits in the basin and much of the tar sands resource. Petroleum expulsion may have occurred at
unusually low degrees of thermal stress due to the very high organic carbon content and hydrogen-richness of the Type I
kerogen present in Green River oil shale.

In order to examine the possible sources and migration pathways for the tar sands and gilsonite deposits, paleogeographic
reconstructions of several oil shale zones in the basin were created. Applying oil yields from core and cuttings samples collected
near the edge of the defined ‘depleted area’, we estimate that the reduction in petroleum-generating potential is slightly more
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than 500 billion barrels. This loss represents nearly 40% of the original oil shale resource and is more than 20 times greater than
all of the tar sands (~12 billion barrels) and gilsonite (~10 billion barrels of oil equivalent) deposits in the basin sourced
primarily from the oil shale interval. Analysis to develop a first-approximation of the amount of actual generated and expelled
petroleum was conducted, leading to estimates ranging from 15 to 50 billion barrels. No attempt was made to estimate the
amount of oil lost to leakage, erosion and biodegradation, but based on our current understanding of the history of the Uinta
Basin, it is expected that such losses could account for much of the discrepancy between the known deposits and estimates of
generated oil. Late Eocene uplift of the Uinta Basin exposed the marginal areas of the Green River Formation around much of
the basin. Exposure of persistent marginal lacustrine sandstone and stacked fluvial sandstones that connect to the depleted oil
shale area may have allowed most of the generated and expelled petroleum to escape. The tar sands deposits around the present-
day basin margins can be thought of as erosional remnants of migration pathways that allowed oil to reach the surface.
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Overview

" Using the results of a 2010 oil shale assessment of the
Green River Formation in the Uinta Basin, we interpret
the oil shale interval in the structurally deepest part of the
basin to be depleted of some of its petroleum-generating
potential due to thermal maturation.

" Thermal maturities for the oil shale interval are generally
consistent with a range of vitrinite reflectance (Ro) values
from 0.5 to 0.9%.



We made general estimates of:

(1) the amount of depletion

(2) the total amount of petroleum generated.

Due to the limited or inconclusive data available (for some
parameters) and assumptions required, these are
essentially order of magnitude estimates.

It should be noted that the efficiency of kerogen conversion
to petroleum in natural systems is overestimated by
pyrolysis experiments.
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During high lake levels,
the lakes expanded to
cover large areas of the
Uinta, Piceance, and
Greater Green River
Basins.

Extent of Luman Tongue of the Green
River Formation in the Greater Green
River Basin modified from Roehler (1993,
fig. 46). Extent of Uteland Butte member
of the Green River Formation and Cow
Ridge Member of the Green River
Formation modified from Johnson and
others (2016, fig, 24). Isopach map of the
Luman Tongue from Roehler (1992).
Isopach map from the top of the
Cretaceous to the base of the Long Point
Bed of the Green River Formation in the
Uinta Basin from Johnson and Roberts
(2003, fig. 8) and in the Piceance Basin
from Johnson and Finn (1986, fig. 9).
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However, during low
lake levels, the lakes
always retreated into
about the same deep

lake depocenter areas.

This map shows the
positions of the lakes
just prior to major
transgressions that
marked the onset of
brackish water
conditions about 52
million years ago.

Extent of the Niland Tongue of the
Wasatch Formation in the Greater
Green River Basin modified from
Roehler (1993, fig. 49). Extent of
Uteland Butte member of the Green
River Formation in the Uinta Basin and
Cow Ridge Member of the Green
River Formation in the Piceance Basin
from Johnson and others (2016, fig.
41).
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When the Piceance Basin part of Lake Uinta was filled
in, a delta formed with foresets as high as 1,350 feet.
The lake in the Piceance Basin depocenter was thus
very deep, and it is likely that the Uinta depocenter was
deep as well.

A deep depocenter is much less likely to shift position
through time than is a shallow depocenter that could be
easily filled in by relatively minor shifts in subsidence
and (or) sediment supply.
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The lower clay-rich part of the
Green River Formation in the
Uinta Basin is informally known
as the “black shale facies”
(black arrows). It generated
large amounts of hydrocarbons
in the structurally deepest part
of the basin, charging many of
the oil fields including the
Altamont-Bluebell field (Anders
and Gerrild, 1984; Ruble and
others, 2001).

We are proposing that, based
on apparent lower organic
matter content (for example,
depletion of oil-generating
potential), oil shale in the
overlying carbonate-rich
Parachute Creek Member (blue
arrows) also generated large
amounts of hydrocarbons.
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The Altamont-Bluebell oil
field produces Green River-
sourced oil from marginal
lacustrine and fluvial
sandstones adjacent to
organic-rich, thermally
mature offshore lacustrine
rocks of the “black shale
facies.”

Organic-rich rocks in the
Piceance Basin depocenter
were never buried deeply
enough to have generated
significant hydrocarbon
volumes (Nuccio and
Roberts, 2003).

Extent of the earliest lakes in the Uinta,
Piceance, and Greater Green River
Basins. Extent of Ramsey Ranch Member
of Wasatch Formation in the Greater
Green River Basin modified from Roehler
(1993, fig. 45). Extent of Flagstaff
Member of the Green River Formation in
the Uinta Basin modified from Ryder and
others (1976, fig, 15). Extent of the Cow
Ridge Member of the Green River
Formation in the Piceance Basin modified
from Johnson and others (2016).
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The very last lake to occupy the Uinta Basin near the end of the Eocene occupied
almost the same area as the very first lake, suggesting that the position of the
deepest part of the lake did not change much through time.
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The saline mineral nahcolite in the Parachute Creek Member today is confined to the eastern part of the

basin (2), whereas saline minerals in the uppermost part of the Green River Formation are much further
west (3). This suggests that the depocenter shifted back and forth through time.
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We propose instead that saline minerals were once present in the Parachute Creek Member throughout the
Uinta Basin depocenter, but in the structurally deepest part, these minerals may have dissolved out or
decomposed during thermal maturation (which also led to petroleum generation) at the time of maximum
burial.
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Dyni (1987) noted that saline minerals were concentrated in the eastern part of the
Uinta Basin depocenter, and proposed that a net flow of water from the Uinta to the
Piceance Basin concentrated the saline brines to the eastern part of the Uinta
Basin depocenter. We propose instead that the entire deep depocenter in the Uinta
Basin once contained saline minerals, such as nahcolite and possibly halite.
Nahcolite would have thermally decomposed in the high heat during maximum
burial, and decomposition products of nahcolite (for example, sodium carbonate)
and any halite present could have been dissolved and removed by groundwater.
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The oil-shale interval in the Uinta and Piceance Basin was subdivided by Cashion and
Donnell (1972) into laterally persistent, time-stratigraphic rich and lean zones. This is a
powerful tool for studying the evolution of Lake Uinta.
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For this study, the percentage sandstone from Amstrat logs and surface
sections was added to the oil yield maps for each oil shale zone from the
USGS oil shale assessments (Johnson and others, 2010a, b). The two
depocenters are the areas that contain very little sandstone.
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Note that oil yields increase markedly toward the central part of the
Piceance Basin depocenter. In contrast, oil yields in the Uinta Basin are
high in the eastern part of the depocenter but decrease markedly toward
the west.
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Wind-driven currents perhaps led to movement of organic matter toward the eastern part of
the Uinta Basin depocenter. However, no eastward organic matter concentration gradient is
apparent in the Piceance Basin depocenter. In addition, much of the organic matter in the
Piceance Basin depocenter was brought in by mass-movement processes from marginal
areas (Dyni and Hawkins, 1981). These deposits would not have been affected by winds.




End of early saline mineral phase

Oil shale and saline mineral depocenter begins to
fillin. Offshore lacustrine conditions expand across
marginal flats.

Section thickens to east
Laminated and blebby oil due to increased subsidence

Organic matter, shaleand rahcelie toward the White River uplift
carbonate ripups,

FE I S i A (A U A
— S s

Douglas
Creek arch

Carbonate mudflats Sandy mudflats

Variegated mudstone, sandstone, and siltstone

Carbonate-rich marginal lacustrine mudstone with Nahcolite
tr |, oolitic, and stromatolitic limeston e
ostracodal, oolitic, and stromatolitic limestones l:l i sandolonttedi<hals

White River uplift

Sandstone-rich marginal lacustrine mudstone with
some ostracodal, oolitic, and stromatolitic limestones

Rich illitic oil shale @ - Areas where intense evaporation could QA saline brines

produce brines. Queried where freshwater BTG (EREE AN
input may have inhibited brine formation \ Orgente mattar and

[ 1 Rich dolomitic oil shale with nahcolite and halite

Modified from Johnson and Brownfield carbonate ripups

(2015)

Lake Uinta was probably a stratified lake with a highly saline lower layer and a fresher upper layer
(Bradley, 1963; Bradley and Eugster, 1969). Salt crusts formed on the broad shallow flats
surrounding the lake (Smith, 1974). During high lake levels the salt would have redissolved forming
dense brines that migrated to the deep part of the lake (Smith, 1974). The brines likely picked up
organic matter and carbonate ripups as they moved forming the “blebby” oil shale intervals in the
Piceance Basin depocenter (Dyni, 1981; Dyni and Hawkins, 1981; Johnson and Brownfield, 2015;
Johnson and others, 2015).




Mass-movement deposits are
common in the oil shale
depocenter in the Piceance Basin.
Dyni (1981) and Dyni and Hawkins
(1981) studied those deposits in
core and attributed some of them
to deep-water turbidity currents.

Dyni (1981) and Dyni and Hawkins
(1981) estimated 40-50% of the
lower part of the Parachute Creek
Member in the central part of the
basin consisted of what they
referred to as “blebby” oil shale.

In the upper right image, note the
grading in the blebby oil shale bed
from abundant large marlstone
fragments at the base to kerogen
in a very-fine grained matrix at the
top.

=

Examples of “blebby” oil shale from the central part of Lake
Uinta, Piceance Basin. (From Dyni, 1981)
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Mass-movement deposits comprise the majority of many of the oil shale zones in the
Piceance Basin depocenter. It is likely that they also comprise a significant portion of the
interval in the Uinta Basin depocenter. Once buried in the deep part of the lake, these
organic-rich sediments would not have moved.




Mass-movement deposits are
present in the oil shale interval
in the Uinta Basin suggesting
that, similar to the Piceance
Basin, much of the oil shale
deposited along the deep
depocenter of the Uinta Basin
may have been brought in
from more marginal areas. We
believe that this is further
evidence that wind was not
the major factor determining
organic matter distribution in

the Uinta Basin.

Blebby oil shale in Mahogany zone in
EOG Resources Pete’s Wash U 13-06
GR holein Sec.6,T.10S., R. 16 E.
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We propose that the decrease In
organic richness toward the deep
part of the Uinta Basin is due

largely to petroleum generation
and migration.
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Oil yield map for the R-0 zone, the oldest oil shale zone assessed in the recent oil
shale assessment (Johnson and others, 2010b). Note the two depocenters are
defined by the lack of sandstone and that oil yields decrease toward the western part

of the Uinta Basin depocenter..
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The R-0 zone is a clay-rich interval in the middle of the “black shale facies” that
iIs known to have generated large amounts of hydrocarbons along the deep
basin trough (see, for example, Ruble and others, 2001).
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Combining a structure contour map of the Long Point bed, which forms the base of
the R-0 zone, and the previous map shows that oil yields appear to decrease along a
particular contour line (shown in bold). This indicates that oil yields decrease when
maximum overburden prior to uplift and erosion reaches a certain thickness.
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Rock-evaluation pyrolysis (Rock-Eval) studies of samples from two drillholes within
the area outlined in black (black dots) indicate that the R-0 zone has generated
hydrocarbons (Anders and Gerrild, 1984; Anders and others, 1992).
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The decrease in oil yields toward the deep trough of the Uinta Basin, as defined by
Fischer assay and the structure contour map on the base of the R-0 zone, can be used to
approximate the area where the R-0 zone has generated hydrocarbons (red line).
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Similar decreases in oil yield toward the structural trough of the basin combined with
structure contour maps (here, the top of the Mahogany oil shale zone) were used to
define “depleted areas” for all other assessed oil shale zones. Shown are variations in oil
yield for the R-4 oil shale zone and hypothesized area of depleted petroleum-generating
potential based on Fischer assay yields (red line).
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Variations in oil yield for the R-6 oil shale zone and hypothesized area where petroleum-
generating potential is depleted based on Fischer assay yields (outlined in red). The
structure contour lines are on the top of the Mahogany oil shale zone.
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Variations in oil yield for the Mahogany oil shale zone and hypothesized area where
petroleum-generating potential is depleted based on Fischer assay yields (red line). The
structure contour lines are on the top of the Mahogany oil shale zone.
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Variations in oil yield for the Bed 44 oil shale zone and hypothesized area where
petroleum-generating potential is depleted based on Fischer assay yields (red line). The

structure contour lines are on the top of the Mahogany oil shale zone.
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structure contour lines are on the top of the Mahogany oil shale zone.




Where Did the Bitumen and
Oil Go?
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Migration pathways?

" Workers in the past noted that many of the tar sand
deposits in the Uinta Basin occur in marginal lacustrine
equivalents of the oil shale interval, which implies that the
oll shale interval may be a source for some of the tar
(see, for example, Cashion, 1967; Calkin, 1980;
Schamel, 2013).

" Here, we have generally placed the tar sand intervals
along the south margin of the basin into the rich and lean
zone stratigraphy defined by Cashion and Donnell
(1972).
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zone (main carbonate oil shale interval). Tar sands at Sunnyside extend from the Uteland Butte to
above the Mahogany zone. (%, percentage; ft, foot; Ro, vitrinite reflectance )
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The cross section was then extrapolated to the present day, 10,000-foot level
representing the approximate surface of the basin at the end of the Laramide orogeny
based on preserved remnants in the southwestern part of the Piceance Basin to the
east. (%, percentage; ft, foot; Ro, vitrinite reflectance )
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Johnson (2014)

Eroded interval
(ft)

Monument
—Butte—
field

Altamont-Bluebell
Mahogany
B /\oil shale zone

bed \

Sealeve| — —— ) ~
teland Butte NG
mber R-0 oil Y
shale zone

Lower Tertiary Rocks Upper Cretaceous Rocks

B shallow saline lake [[] Upper Cretaceous rocks undiv.
[_] Upper Cretaceous Castlegate Ss

[ >10 gallons per ton carbonate oil shale
[] <10 gallons per ton carbonate oil shale
[E clay-rich oil shale
[] Sandstone-rich marginal lacustrine

: Ro0.50 .. sor2
[ Fresh-water lacustrine 1 Line of equal % vitrinite
I Paludal and fresh-water lacustrine reflectance (Ro)
[ Fluvial and alluvial, mainly mudstone
[T Fluvial and alluvial, mainly sandstone

Qil producing interval

Vertical exaggeration: about 15/1

Producing interval
10 20 30 MILES

30 40 KILOMETERS

Paleogene subsidence rates prior to deposition of the Mahogany zone increased
gradually toward the trough of the Uinta Basin. After deposition of the Mahogany
zone (48.8 millions of years ago), subsidence rates increased markedly toward
the trough of the Uinta Basin while, at the same time, the south margins of the
basin were uplifted (indicated by blue arrows). (%, percentage; ft, foot; Ro,
vitrinite reflectance)
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Depleted oil shale intervals are shown in purple, tar sand intervals are shown in brown, and
the eroded section is shown in beige. Depletion begins at a vitrinite reflectance of about
0.5%. QOil and bitumen migrated through the present-day tar sand deposits to the surface
where it was eroded away. (%, percentage; ft, foot; Ro, vitrinite reflectance )
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River Formation cropped out by late Eocene time are in pink. The Sunnyside
deposit is very close to late Eocene outcrops. The P.R. Spring-Hill Creek
deposit is much further from late Eocene outcrops. (%, percentage)
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and Grout (1992) that suggests a southeast transport direction for the
gilsonite. (%, percentage)
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north-south line shown in blue. (%, percentage)




We estimated how much petroleum-generating
potential is missing from the depleted area
based on Fischer assay data.

There is virtually no core available for the depleted area largely
because it is too deep to be considered a potential oil shale resource
and it is not a major oil producer. Fischer assay data from cuttings
were used in a 2010 oil shale assessment (Johnson and others,
2010b) to determine gallons per ton and barrels per acre for this area
along the deep basin trough that lacked core data.

Gallons per ton and barrels per acre values from coreholes located

closest to the depleted area were applied to the entire depleted area
for each oil shale zone.

As these coreholes are from the margins of the depocenter, they

probably represent minimum values of the original organic richness
prior to depletion.

Gallons per ton and barrels per acre values from the 2010 _
assessment were subtracted from these corehole values to estimate
how much petroleum-generating potential is now missing.
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This map shows barrels of oil per township based on Fischer assay in
each township in the Uinta Basin. (From Johnson and others, 2010b)
These maps were used to determine total present-day oil in place for the

depleted area for each oil shale zone.




Missing oil shale resource

" The total amount of missing petroleum-generating
potential based on Fischer assay is 509 billion
barrels.

® This is not the amount of bitumen and oill
generated!!!

" Only a small percentage is likely to have been
generated as mobile petroleum.

" Much of the generated oil and bitumen migrated
through marginal lacustrine and alluvial sandstones
and fractures to the surface and were lost.



Calculating the Amount of
Bitumen and Oil Generated

U.S. Department of the Interior



Approach

" Ranges of values for geologic, geochemical, and
expulsion-related parameters were used in a probabilistic
analysis of potential generated oill.

" EXxpulsion factors were estimated using values from
Sandvik and others (1992) that were modified by a
pyrolysis yield-to-nature correction factor from Lewan and
others (2002).

" Transformation ratios, or fractional conversions, were
estimated from studies of the thermal history of the oil
shale interval in the Uinta Basin combined with
iInformation from hydrous pyrolysis experiments (Lewan
and Ruble, 2002).



Expulsion factors

Fischer assay
values were used
to estimate
immature TOC (FA
oil yield = 2 x
TOO).

An original HI of
700 mg/g was
assumed (minimum
for Type | kerogen).

HI =700 mg/g
.. TOC=7%
" Expulsion factor = 40 mg-oil/g-rock

Values from this
graph were
multiplied by 0.59
based on guidance
in Lewan and
others (2002) to
get estimate of
maximum expelled

oil. Fig. 7. Calculated amounts (contours) of expelled oil {mg/g-rock), at moderately high maturity
(transformation ratio = 0.95) vs TOC and HI (—). An absorptive retention of 10 g/100 mg-OM and a
critical saturation of zero was used for these calculations. Contours of total Rock-Eval potential, S2, are

Org. Geochem. Vol. 19, Nos 1-3, pp. 77-87, 1992 &lso shown (-—-).

(%, percentage; FA, Fischer assay; HI, hydrogen index; mg/g, milligrams per gram; TOC, total
organic carbon)
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Parameter distributions

Triangular distributions Log-normal distributions
= Zone areas (900-2,000 mi?) " Zone thicknesses
" Transformation ratios (55 to >1,000 ft)

(0.001-0.12) " EXxpulsion factors
" Rock densities (2.4—2.6 g/cm?) (5 — 50 mg-oil/g-rock)
= Qil densities (0.88—-0.92 g/cm?)

Log-normal Distributions

Triangular Distributions

= MODE = 667
[ T MEAN=1289

MODE = 0.23

~—._ MEAN =0.37

MINIMUM = 40 MEDIAM = 120 MAXIMUNM = 280 MINIMUM = 010 MEDIAN = 0.30 MAXIMUM = 15.0

Figure Ad-1. Components of a triangular disteibution,
Figure A4-3. Components of a lognormal distribution

(%, percent; ft, foot; g/cm?3, grams per cubic centimeter; mg-oil/g-rock, milligrams oil per gram of rock, mi?, square mile)



Calculations

Total estimates of generated and expelled oil were
calculated using the expulsion factors and
transformation ratios, converted to barrels per ton,
and multiplied by an estimated total rock mass in
each zone using an average rock density, the size
of the depleted area for each zone (in square
miles), and the thickness (in feet) of each oil shale
zone to generate final estimates of the total
expelled oil in barrels.



Calculations

We employed Monte
Carlo simulations,
similar to those used in
U.S. Geological Survey
oil and gas
assessments, to
estimate ranges of
possible generated
petroleum for each
interval in the depleted
area in the Uinta Basin.

Area x thickness x rock
density x expulsion factor
x transformation ratio + oil
density... conversion
factors = barrels of olil

Monte Carlo
Simulation for the
Assessment of

. Undiscovered
Resources

n

‘ Sizes of undiscovered fields

Number of undiscovered fields

N

S51+52+S3+...+Sn=25

Repeat 50,000 times

Forecast of undiscovered resource

U.S. Geological Survey Digital Data Series DDS—69-D

Figure 1. Schematic diagram of data model used for Monte Carlo simulation for the assessment of undiscovered resources using programs
EMCEE and Emc2 described in text.



Results

" The total mean estimated expelled oil from the oll shale
zones considered in this analysis was 29.2 billion barrels
(bbl) (range 14.8 to 45.8 billion bbls) or approximately (~)
6% of the depleted petroleum-generating potential of 509
billion bbls and 3% of the estimated 1,057 billion bbls of
original oil shale resource in-place in the depleted area.

" The mean is around 30% larger than what is known to be
present in the Green River-sourced tar sands (~12
billion bbls; Schamel, 2013) and gilsonite deposits
(~10 billion bbls; Cashion, 1967) of the Uinta Basin
today. Our inference is that most of the missing petroleum
has escaped to the surface or was eroded away along
with overlying rock.



Closing comments

" Recently acquired programmed pyrolysis data on cuttings
from the deep part of the western Uinta Basin depocenter
show reduced hydrogen indices and higher production
Index values relative to immature Green River oil shales,
further indicating petroleum generation has occurred.

" The reason for the large discrepancy between estimates
of depleted petroleum-generating potential and expelled
oll are currently not well understood.



Closing comments

" |tis possible that the organic richness in the western
depocenter is not well represented by the Fischer assay
oll yields from cores near the depleted-area boundary.

" The western depocenter may have had lower organic

richness due to:
" Greater dilution from detrital inputs,
" |ower productivity of organic matter sources, and
" Poor preservation conditions.

&

USGS





