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Abstract

The Baiyun Sag (BYS) is located in the continental margin of the northern South China Sea (SCS). It has been one of the key areas to
characterize geothermal field and thermal evolution of passive continental margin. The geological evolution of the BYS was driven by the plate
tectonic interactions between the Philippine Sea plate, the Eurasian plate, and the Indo-Australian plate and was influenced by seafloor
spreading of the South China Sea (SCS) in the Late Early Oligocene. Heat flow measurements show that the BYS is characterized by a high
background heat flow, ranging from 72 mW/m? to 94 mW/mZ. The present-day heat flow of the northern South China Sea increases from the
northern shelf with thick crust to the southern slope with thinned crust.

This study employs forward and inverse modelling to simulate the rift and post-rift processes exampled by three wells covering shelf to slope.
Two new thermal evolution models of the BYS are established for continental shelf and continental slope. The new heat flow model of
continental shelf is generally in agreement with the model of McKenzie. While heat flow of the new continental slope model continuously
increases rather than decreases in previous models, which is resulted from lithospheric thinning and mantle upwelling during the Neogene
passive continental margin stage. Heat flow gradually reduced after the cessation of the sea floor spreading (10 Ma).

Igneous rocks are generally formed after the late Miocene in the north margin of the SCS, which covered dozens of kilometers (Yan et al.,
2006). The intrusion of magma into the brittle crust and mantle drastically heated the lithosphere and led the BY'S to deform strongly through
lithosphere thinning. The local multi-staged magmatic activities mainly contribute to the high level of maturity in the Liwan Sag located in the
lower slope.

In addition, thermal state and thermo-rheological structure of the crust and mantle during the period of rifting and drifting are key factors
controlling the thermal evolution of the BYS. The Panyu low uplift on the shelf is born from a normal lithosphere. For areas located in the
continental slope, the lithosphere of BYS has thinned stepwise and became hotter during the passive continental margin stage.
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Introduction

As there is limited amount of hydrocarbon left to produce in existing reserves, the
hydrocarbon industry is now pursuing to explore frontier areas. The major unexplored area is the
ocean. Explorations have been focused in the deepwater to ultra-deepwater passive margins,

especially base of slope or the continent-ocean boundary area (White et al., 2003).

A Current deep-water areas
Frontier deep-water areas

Explotation at deep-water margins

Continental margin models
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the South China Sea (NMSCS).

A series of Meso-Cenozoic sedimentary
basin have been developed in the NMSCS,
which contained abundant petroleum res-
ources in the deep-water area. The Pearl
River Mouth Basin (PRMB) is located in
the continent-ocean transition of the
NMSCS, which was influenced by seafloor
spreadingof the SCS in the late Early
Oligocene.

i .‘-’n-\

T < Ao
MM’M,/]
} e 1
)

g
-~
£
- . 5 -
" Pearl River Mouth Basin |2
== o =
; | -
-
£ o=’
= y """"".r/i N"‘
F
B a r//q _\30}‘28,5543
(iangdongran m.‘r':’ . ,‘.;’,- =
o

—
-
-

]

Lt
0 -
il
Y
o
ZA N
=

a. School of Energy Resources, China University of Geosciences, Beijing 100083, China.

Yajun Li*®, Zhenglong Jiang”*, Shu Jiang®*, Kangning Xu®

b. School of Marine Sciences, China University of Geosciences, Beijing 100083, China.
c. Energy and Geoscience Institute, University of Utah, Salt Lake City, UT 84108, USA.

Geological Setting

The geological evolution of the PRMB was driven by the plate tectonic motions between the Philippine
Sea plate, the Eurasian plate and the Indo-Australian plate , and was influenced by seafloor spreading
of the South China Sea (SCS) in the late Early Oligocene. The PRMB experienced Cretaceous pre-rift
stage, Paleogene rift stage, Neogene passive continental margin stage (post-rift stage) and Pliocene-
Quaternary Neotectonic stage.

Deepwater area: Baiyun Sag

Ultra-deepwater area: Liwan Sag

The Baiyun (BYS) is characterized by composite
graben controlled by several boundary faults with
3 to 4 km of vertical offset. The inner faults are mostly
c.20 km in length with small vertical offset. During
the Paleogene rift stage, the BYS developed thick
lacustrine organic-rich source rocks. After that, the
BYS became the center of subsidence and deposition,
and experienced the post-rift abnormal subsidence
due to lithosphere cooling.

The Liwan Sag (LWS)is mainly characteristic
of rift-depression without typical basin-controlling
faults. There are multiple episodes of local mag-
matic activities during evolution of the sag. The
multi-staged magmatism not only have generated
domes, but also provide heat to ambient strata. The
present structural framework of the LWS was
rebuilt by the large-scale diapirism at ~32Ma.
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Regional location of the Preal River Mouth basin

Lithostratigraphic sequence
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Paleo-heat flow evolution and thermal history of the Baiyun Sag, the Pearl River Mouth Basin
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A typical “hot basin” with average heat flow of 71.8+13.6 mW/m? ranging from 24.2 mW/m® to

121.0 mW/m”*.

Thermal gradient ranges from
24.7 to 60.8C /km, with the average
value of 37.917.4C /km. The geoth-
ermal gradient value of shallow area
in the PRMB is higher than that of
the East China Sea Shelf (30.0°C/km).

Panyu uplift:
34.0~35.6 C/km

Baiyun Sag:
48.0~52.0 ‘C/km
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Sources of Heat flow measurements in the Pearl River Mouth Basin
(Magnetic anomaly modified from Pan et al., 2007)
The rock mixing principle (Beardsmore et al., 2001) is used to estimate the conductivity of the mixed
lithology, the heat flow arecalculated by using the follow equations:

where A mixis the avera
the sediment column (

> di

A mix=

ge conductivity of
W/m°C),di is the

i thickness of each lithology (m); Aiis the

Ni

conductivity of each lithology (W/m°C).

Q= A mixX(To-Tv)/AZ

where Q is the heat flow (mW/m?), T, is the temperature
at the surface of the sediment column (°C). T, is the
temperature at the base of the sediment column (*C) and A
Z is the sedimentary thickness from the surface to the

base of the stratigraphic column (m).

Depth Subsea (km)

The heat flow values, ranging
from 72 mW/m? to 94 mW/m? in
the BYS are much higher than
that in normal rift basin (50~65
mW/m?). The heat flow increa-
se from the shelf in the north to
the COB in the south, this trend
is opposite to that Moho depth
decreases from shelf to COB.
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Method 1-D modeling results

S : ; S e S The well BY-1 with a total depth of 5094 m, located in the south of the Panyu low uplift and close to the The well BY-2 is much deeper than well BY-1, which lies on the upper slope. The oldest layer is
Geological information Tecono-stratigraphic histor drilling and seismic data - : ’ ; ; . A . i : :
g 2= ! g shelf break area, has drilled into the Eocene Enping Fm. The thickness of the Eocene Wenchang and the Oligocene Zhuhai Fm with a total drilling depth of 3843m. The thickness of the Eocene Enping
| | Enping Fm are obtained from drillingwell and seismic data, which were used to establish geologic model and Wengchang Fm are estimated from seismic data.
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1-D modeling results Thermal history reconstruction Discussion & Conclusion
The well LW-1 with a total depth of 4185.4m is located in the lower slope with water depth of a)0.0Ma . . . ,
2450 m. It has drilled into the Eocene Wenchang Fm. The drilling data are used to build up the 0 (a) 0 The PRMB is characterized by a high background hgatﬂow. The present-day heat flqw increases from the
geologic model. Considering the well area is close to the LWS, local multi-staged magmatic 1 S north to south of the northern SCS where the crustal thickness decreases from the continental shelf to slope.
activities (Dome-like uplifts or diapirs) are likely to have contributed to the present maturity drgree ) . - - - -
of well LW-1 (Pang et al., 2007; Sun et al., 2013: Zhou et al., 2012). When the additional heat by the High maturity values are observed Two new thermal evolution models for continental shelf and continental slope of the PRMB are established.
volcanic intrusion was inputted into the thermal modelling, the simulated %Ro was consistent in the deep of the BYS and the South- The new continental shelf model is generally in agreement with the model of Mckenzie, while the slope
overall with the:measured values ern uplift zone, and relatively low model is quite different from previous models during the Neogene passive continental margin stage. With
01 : ay 0 0 iy maturity values in the Panyu low-uplift multiple episodes of seafloor spreading of the SCS, heat flow in the slope did not decrease but continuously
. E E at present day. increased as a result of lithospheric thinning and mantle upwelling. Heat flow gradually reduced after the
. ] 5 cessation of the sea floor spreading (10 Ma). Tectonic settings and magmatism in deep mantle control the
1 . b differential evolution of the passive continental margin.
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