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Abstract 

The Triassic section of the Western Canada Sedimentary Basin is the richest interval within the basin in terms of volume of oil per volume of 

rock. The Lower and Middle Triassic Doig Formation has been historically known for the limited production from its conventional reservoirs 

in British Columbia (BC) and Alberta (AB). More recently, the Doig has received attention for its unconventional potential as a gas and natural 

gas liquids play, with estimates of total gas in-place ranging from 40 to 200 Tcf. The Doig has been informally subdivided into a lower 

Phosphate Zone (DPZ), and an upper siltstone interval. While the source-rock reservoir potential of the Doig is undoubtedly large, so are the 

uncertainties related to the spatial and stratigraphic distribution of its reservoir facies and properties. This study is an investigation of the 

reservoir facies of the Doig Formation in BC and characterizes its variability in porosity, pore throat size distribution, mineralogy and organic 

content. A grid of 15 cored wells covering its entire extent in BC, was selected. Eight reservoir facies are recognized, based on lithofacies, 

mineralogy by X ray diffraction (XRD), total organic carbon by Rock-Eval pyrolysis, porosity and pore size distribution by helium pycnometry 

and mercury intrusion, and permeability by pressure pulse-decay. In contrast to many shale reservoirs, the Doig is characterized 

mineralogically by a low clay content, and higher quartz and carbonate, especially dolomite. The DPZ is more clay and organic rich than the 

upper Doig, showing overall lower porosity and smaller average pore throat radii. In spite of these generalizations, facies stacking patterns 

confer a high degree of internal heterogeneity within these two major zones. Coarser and clay poor facies are characterized by median pore 

throat sizes three to four times larger than the finer clay rich facies. Pore throat size has a high degree of correlation with matrix permeability, 

which spans four orders of magnitude, from 10E-7 and 10E-4 md. Additional heterogeneity is caused by superimposing diagenetic features, 

such as authigenic pyrite, apatite, calcite veins and clay-smeared fractures, and may not be defined at the core or well log scales. 
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Pore Size Distribution and Pore StructurePorosity and Permeability
Porosity is highly variable, ranging from 0.6% to 16.4%, with a median of 3.3% 
and a P10-P90 range of 1.7% to 8.2%, as measured by He pycnometry and 
mercury immersion bulk density on as received samples. 

The raw and the closure corrected mercury injection porosity values show a very 
large scatter and poor correlation with helium pycnometry, highlighting the 
importance of closure and compressibility corrections. The mercury injection 
porosity values corrected to a standard net confining stress have a very good 
correlation with porosity values derived from helium pycnometry (Figure 9), albeit 
consistently lower by roughly 20%. This difference is attributed to the lower limit 
of 3 nm pore sizes accessed by mercury at the pressure limit of the method, and 
the inaccessibility of non-interconnected pores.

The stress sensitivity of permeability obtained from measuring permeability at 
different effective stresses correlates well with the different reservoir facies 
(Figure 11). The permeability of the quartz-rich siltstones, which dominate the 
facies succession of Doig C, is the least stress sensitive, as the competent 
mineral framework is effective in preventing pore volume compression. The finer-
grained samples containing 1-2% clay and 15-20% carbonate show almost one 
order of magnitude of permeability reduction when effective stress is increased 
from 1,000 to 5,000 psi. With 8% clay and 40% carbonate, the fine-grained 
massive mudstone facies has a permeability reduction of two orders of 
magnitude for the same effective stress range.

Figure 11 - Log of permeability (k) versus effective stress (σ ), showing the wide range of 
permeabilities, as well as the difference in permeability sensitivity to stress across reservoir facies

Figure 13 - SEM image of silica-rich siltstone sample TG13, with associated elemental maps 
used in the identification of mineral phases, as well as sample photograph, XRD mineralogy and 
incremental pore size distribution curve from mercury injection

Figure 14 - SEM image of carbonate-rich mudstone sample HM1 with associated elemental 
maps used in the identification of mineral phases, as well as sample photograph, XRD mineralogy 
and incremental pore size distribution curve from mercury injection

The pore throat size distribution of the different reservoir facies of the Doig is 
highly variable, spanning three orders of magnitude (P10-P90 range). Pore 
throat size is partly controlled by clay content; smaller pore throats occur in 
samples with higher clay content, regardless of carbonate abundance. 

The more organic and clay-rich mudstones of the Doig A are mostly mesoporous, 
having 80% of their pore volume in the 3 to 100 nm range and  a median size of 10 
nm. There is likely a large contribution from microporosity that is undetectable by 
this method, and will need low pressure gas adsorption to be quantified. 

On the opposite end of the spectrum in terms of permeability and pore size 
distribution, is the silica-rich siltstone with a P50 pore throat radius of 490 nm and 
a large P10-P90 range of 50 to 1800 nm.

The difference in pore size, as well as pore type and geometry is highlighted in the 
SEM photomicrographs. In the silica-rich sample, the intergranular pore space is 
abundant and the macropores are evident. In the fine-grained carbonate 
mudstone, there is very little visible porosity in the form of slits in the carbonate 
matrix. Much of the porosity of this facies is at or below the resolution of field-
emission SEM and individual micropores cannot be resolved.

Matrix permeability spans four orders of magnitude, ranging from 7E-02 mD to 
3.5E-05 mD at effective stresses of 2,500 psi. The permeabilities measured so 
far have a remarkably good correlation with porosity. The dominant factor in 
controlling the permeability is the widely different pore throat size distributions, 
which also shows a good correlation in the data acquired to date.

Figure 12 - Cumulative pore size distribution curves as percentage of total porosity, colored by the 
log of permeability, for four samples with very distinct pore sizes bracketing the entire range of pore 
size distributions

Figure 10 - Helium pycnometry porosity versus log of permeability at 2,500 psi, illustrating the very 
good correlation observed between these two variables, as well as the dependency on the pore 
throat size
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Mineralogy
The Doig is primarily composed of silicates and carbonate, with minor amounts 
of clay (Figure 6). The main form of silica is quartz, with an average of 39%, 
minimum of 12% and maximum of 82%. The primary carbonate is dolomite, 
with an average of 26%, minimum of 4% and maximum of 72%. Other 
significant silicate minerals are orthoclase and albite with average values of 8% 
and 7%, respectively. Calcite is only locally important, with an average of 11% 
but reaching 62% in some samples.

The main clay mineral is illite, and the average clay content is 6%, with a 
maximum of 21%; some facies being completely clay-free. Some of the clay 
content may be due to mica, as their peaks coincide in the diffractograms of bulk 
mineralogy analysis. There is also a subordinate amount of chlorite. Other 
important minerals are apatite and pyrite, due to being present in a large 
number of samples, albeit in trace quantities, with maximum values of 7% and 
5%, respectively.

Although the carbonate and silica content of the Doig siltstones and mudstones 
are highly variable, some distinctions can be made in terms of the typical 
mineralogy of the Doig subzones (Figure 8). 

The highly cemented organic-lean massive siltstones and cross-bedded fine 
sandstones of the upper Doig C have no clay, and are predominantly composed 
of silicates, in the form of detrital quartz and cement. The mineralogy and 
lithology of the Doig B is much more variable, ranging from carbonate-rich 
massive, bioturbated or bioclastic mudstones to silica-rich wavy laminated 
silstones with sparse carbonate laminae. The clay content of the Doig B is 
highly variable and difficult to predict from a visual facies description. The Doig A 
mudstones have an overall higher clay content, and variable amounts of 
silicates and carbonate. Pyrite commonly occurs, correlating with high TOC 
values, which indicates an anoxic reducing depositional environment.
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Figure 6 - Box and whisker plot of the main minerals present in the samples analyzed by XRD
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Figure 7 - West-east dip cross-section of the Doig Formation, with datum on top of Doig B, showing the correlation of the subdivision across the basin, with XRD mineralogy and TOC values

Figure 8 - Ternary diagram of the mineralogy normalized to silica, carbonate and clays, with 
symbols colored by Doig subzone and sized by median pore throat radius

Figure 9 - Crossplot of helium pycnometry porosity and the three different steps from mercury 
injection porosimetry (raw, closure corrected and net confining stress corrected), highlighting the 
greatly improved correlation between pycnometry and mercury injection once corrected, as well as 
the consistently lower porosity measured by mercury injection
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The Triassic Doig Formation of the Western Canada Sedimentary Basin is 
continuous across northeastern British Columbia and western Alberta. It 
historically had limited production from conventional reservoirs and was viewed 
as a source-rock for other conventional reservoirs in the basin. In the last five 
years, the Doig Formation has been recognised as an important unconventional 
reservoir for gas and natural gas liquids. Estimates of total gas in-place range 
from 40 to 200 Tcf (Walsh et al., 2006).

The Doig was deposited in the Middle Triassic, between the Anisian and 
Ladinian, and is part of the Daiber Group with the underlying Montney Formation.

In this poster we present preliminary results on 
geochemical properties of the Doig Formation, which are part of an ongoing 
petroleum system analysis of the Doig. The project objectives are:

the petrophysical and organic 

This study is based on core and cutting samples from 25 wells from British 
Columbia and adjacent area in Alberta, distributed along the entire spatial extent 
of the Doig Formation. Samples were analyzed to determine mineralogy, 
porosity, pore-size distribution (PSD), permeability, total organic carbon (TOC), 
temperature of maximum hydrocarbon generation (Tmax), and kerogen type.

Porosity was determined on all core samples by a combination of helium 
pycnometry skeletal density and mercury buoyancy bulk volume measurements. 
Another source of porosity data, as well as pore throat size distribution is mercury 
injection porosimetry. Mineralogy was determined by X ray diffraction (XRD). 
Permeability was determined by pulse-decay gas permeameter, and Tmax, TOC 
and kerogen type were determined through Rock-Eval type pyrolysis on cutting 
samples in order to achieve a higher data density and continuous profiles. The 
pore structure was investigated with the use of scanning electron microscope 
(SEM) images.

Figure 1 - Stratigraphic chart of the Western Canada Sedimentary Basin and expanded view of the 
Triassic (after Mossop and Shetsen, 1994; Golding et al., 2016)

Figure 3 - Wells included  in this study, overlain on isopach map of the Doig-Halfway interval (after 
Dixon, 1999)

Ÿ Understand the spatial and stratigraphic variability in the petrophysical 
properties of the Doig Formation;

Ÿ Determine how lithofacies and mineralogy affect the pore size distribution 
and permeability;

Ÿ Assess the potential for gas and natural gas liquids over the entire extent of 
the Doig by determining the organic richness, maturity range and timing of 
hydrocarbon generation and migration.

The Triassic in the Western Canada Sedimentary Basin marks the transition from 
a carbonate-dominated intra-cratonic and passive margin that had persisted 
during the Paleozoic, to a siliciclastic-dominated relatively active embryonic 
foreland basin in the Triassic and Jurassic. The sedimentation of the Doig was 
influenced by the distribution of the underlying Devonian Leduc reef and the 
Mesozoic  reactivation of the Mississippian Dawson Creek Graben Complex. 
The overall structural dip is southwest, where the Doig is the thickest and 
deepest, reaching 4,400 m of burial depth and 500 m in thickness.

The drifting of Pangaea into a subtropical and temperate climate midlatitudinal 
position, caused the westward facing margin of Pangaea to become very arid 
under the influence of trade winds, which also curtailed carbonate productivity. 
During the mid-Triassic, a sedimentary environment consisting of dominantly 
fine-grained siliciclastic marine shelves and ramps with extensive associated 
aeolian and evaporitic environments with low fluvial input occured.

The Doig was deposited under marine conditions from shoreface to offshore, and 
presents a wide variety of lithofacies, including very fine sandstones, siltstones, 
mudstones and bioclastic packstones.

The timing of hydrocarbon generation and migration is poorly constrained, but 
hydrocarbon generation is thought to have started in Late Jurassic, reaching 
maximum transformation rate during Early Paleogene, before the last major 
erosion. Hydrocarbon migration from the Doig is thought to have occurred as late 
as Early Cretaceous. Studies on petrophysics and organic geochemistry of the 
Doig are sparse and limited in scope. The geological control on the petrophysical 
and organic geochemical properties of the Doig and their spatial and 
stratigraphic distribution is also currently poorly understood.

The Doig is informally subdivided into three units. The basal unit, Doig A, is also 
known as the Doig Phosphate is an organic-rich radioactive mudstone with 
common phosphate granules and nodules. The intermediate Doig B is primarily 
composed of intercalated mudstones and siltstone. The upper Doig C is 
composed of  relatively  organic-lean siltstones and fine sandstones.

Figure 2 - Depositional environments of the Doig and associated formations (after Barclay and 
Leckie, 1986; Edwards et al., 1994)

Figure 4 - Flow chart of the methods used in this study in order to derive petrophysical and organic 
geochemical properties

The gas expansion pycnometry was measured four times before drying and four 
after drying, on crushed rock of 20 to 35 mesh size; the equilibrium time was set 
to 300 seconds. The unstressed porosity is obtained by mass balance calculation 
once the density of the solid framework (grain density) and of the bulk rock (bulk 
density) are established, by assuming a fluid density of air. Mercury intrusion was 
done on crushed rock of 4 to 8 mesh, cleaned with solvent and oven-dried. The 
intruded volumes were corrected for closure and compressibility effects. Pore 
throat radius is calculated through the Washburn equation with mercury-air 
interfacial tension and contact angles and assuming cylindrical capillary tube 
pore radius geometry.

Mineralogy was obtained by XRD using powdered samples smear-mounted on 
glass slides. Permeability was determined by pulse-decay gas permeameter 
using He at effective stresses between 1,000 and 5,500 psi,  by varying the net 
confining stress while keeping the pore pressure constant.

Pyrolysis was done using a Rock-Eval type instrument on 70 mg of powdered 
sample, at a temperature rate of 25 °C per minute until 650 °C, followed by a 
temperature decrease and oxidation stage at 730 °C.
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Figure 5 - Analytical methods commonly used for determination of porosity and their ranges of pore 
size investigation, with methods used in this study highlighted in green
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Conclusions

Ÿ

carbonate, with only minor amounts of clay;  the main clay mineral is illite, 
with subordinate amounts of chlorite.

Ÿ The Doig C is the most homogenous member being composed primarily of 
clay-free quartz-rich massive siltstones and cross-bedded fine sandstones.

Ÿ Doig B is the most variable member in terms of facies and mineralogy, 
ranging from carbonate-rich massive, bioturbated or bioclastic mudstones to 
silica-rich wavy laminated silstones with sparse carbonate laminae.

ŸThe Doig A mudstones have the highest amount of clay, and common 
occurrence of pyrite,  but show a highly variable proportion  between silica 
and carbonate.

 The Doig siltstones and mudstones are primarily composed of silicates and 

Ÿ Low-pressure gas adsorption to characterize the distribution, and FIB-SEM 
to image the structure of the microporosity.

Ÿ  Additional mercury injection and pulse-decay permeability measurements 
for refining the  correlation between pore throat size and permeability.

Ÿ

Ÿ Additional X ray diffraction and triaxial tests in order to derive correlation 
between mineralogy, ultrasonic velocity and geomechanical properties.

Ÿ Petroleum system analysis of the Doig with a basin model calibrated to 
source-rock and reservoir properties, as well as present-day thermal 
maturity indices.

The Doig samples analyzed show a wide range of TOC and degree of thermal 
maturity. The average TOC is 1.9% and the maximum is 6.4%,  with the 80% 
confidence interval distributed between 0.8% and 3.3%. The highest TOC values 
are observed in the upper Doig A member.

Most samples are mature and within the oil window. Less than 5% of the samples 
were overmature, with Tmax values as high as 490 °C. A few samples were 
immature, albeit most of which are unreliable due to poor quality Tmax peak. 

There is a wide range of Tmax values for any given present-day depth across the 
basin, suggesting the paleo-depth of burial had a strong influence on the present-
day maturity. Although, shallower wells in the eastern portion of the basin tend to 
show lower maturities, second and third order controls impose a more complex 
pattern. Especially in the thicker successions of the westernmost wells, a wide 
range of maturity is observed on a single well.

Combined use of pseudo van Krevelen and Tmax vs. HI plots suggests that the 
organic matter is primarily of kerogen type III, with minor contribution from type II-
III.

Figure 15 - Pseudo van Krevelen plot showing the thermal evolution path of the two types of 
kerogen present
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Figure 16 - Tmax vs. HI plot showing the kerogen type and thermal degradation path of kerogen 
from the immature to overmature windows

Mineralogy

Ÿ

Ÿ Porosity is partly controlled by clay and calcite, probably in the form of 
carbonate mud; the higher porosity samples are poor in clay and calcite and 
rich in silicates.

Ÿ Mercury injection porosities are consistently lower than the helium 
pycnometry ones, due to pore size accessibility limitations, but are 
demonstrated to be reliable if properly corrected;

Ÿ Matrix permeability spans four orders of magnitude, from 7E-02 mD to 
3.5E-05 mD at effective stresses of 2,500 psi and show a good correlation 
with porosity; the mineralogy plays a key control in determining pore volume 
compressibility; the quartz-rich siltstones do not have stress dependent 
permeability.

Ÿ The pore size is also a key controlling factor in determining the permeability, 
with the mostly meso and microporous relatively clay-rich mudstones 
showing the lowest permeability values; the silicate-rich siltstones, which 
have median pore throat size two orders of magnitude larger, well in the 
macroporosity region, exhibit the highest permeabilities.

 Porosity is highly variable, ranging from 0.6% to 16.4%.

Porosity, Pore Size and Permeability

Ÿ

Ÿ The primary kerogen is of type III, with secondary contribution from type II-
III.

 The average TOC is 1.9%, with a minimum of 0.3% and  maximum of 6.4%.

Organic Geochemistry

Future and Ongoing Work




