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Abstract 

 
The low commodity price for hydrocarbons has made increasing EURs while decreasing CAPEX for unconventional wells a critical factor to 
operator survival. While the DOE has been instrumental in advancing the science that formed the North American shale play, it will be 
necessary to have another technology renaissance to improve the hydrocarbon recovery factor from the 7 to 10% range that is currently being 
realized, to a step change to 15% or more. Although unconventional wells are typically fracked in even stages, production is not uniform. Why 
is that? Uneven production is likely due to differences in fracture-achieved surface area, pore connectivity, and permeability variability. 
Coupled geochemical-transport processes occurring at fluid-shale interfaces can profoundly alter these parameters and thus EUR. Our goal is to 
understand primary and secondary nanoscale reactions that are occurring in, and likely damaging, shale through the fracking process. 
Relatively little has been published on this subject. 
 
The work, being conducted by SLAC and managed by NETL, is using world-class, synchrotron transmission x-ray microscopy (TXM), and 
reactor and modeling studies to advance the understanding of nanopore-scale reactions caused by fracking fluid-shale interactions. The TXM 
uses high-flux focused x-rays to image shales at a spatial resolution of 30 nanometers such that pore networks and reaction products can be 
directly observed. This research is yielding knowledge that supports a step change in hydrocarbon recovery by customizing stimulation fluids 
and techniques to the formation-specific chemistry. The work is also explaining the release of contaminants from kerogen and the rock matrix. 
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UNCONVENTIONAL RECOVERY 
FACTORS 

SHALE GAS:  2 TO 19%;   AVERAGE 13%

SHALE OIL:  LESS THAN 2 %

NOT GOOD ENOUGH !!!NOT GOOD ENOUGH !!!
WE NEED TO STUDYWE NEED TO STUDY
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ENVIRONMENTAL FACTORS 

BIG QUESTION ?
CAN WE INCREASE RECOVERY FACTORS 
WHILE AT THE SAME TIME SEQUESTERINGWHILE AT THE SAME TIME SEQUESTERING 
HEAVY METALS AND RADIOACTIVE 
COMPOUNDS ?COMPOUNDS ?   



FUNDAMENTAL SCIENCE 

This research provides the knowledgeo This research provides the knowledge 
base critical to understanding chemical 
and physical evolution of reservoirand physical evolution of reservoir 
shale, assessing risk to reservoirs. 
Process knowledge obtained providesProcess knowledge obtained provides 
a framework and criteria to evaluate 
improved fracture fluidimproved fracture fluid 
compositions and stimulation best 
practicespractices.
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Presenter’s notes: SLAC has been part of this effort from the beginning and we intend to participate in the funding. 
  

Project overview 
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Processes:
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Oxidative pyrite
Prediction: acid neutralization
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Positive and negative impacts 
on transport
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Positive and negative impacts 
on transport

Oxidative pyrite 
Porosity generation Flow occlusion
Can we predict (and mitigate) mineral 
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Positive and negative impacts 
on transport
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Presenter’s notes: SLAC has been part of this effort from the beginning and we intend to participate in the funding. 
  

Approach: 
Carbonate poor vs. carbonate rich 
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Presenter’s notes: Generation of porosity due to selective carbonate dissolution in both carb-rich and carb-poor shales. Distribution of new porosity 
dictated by pore-scale distribution of carbonate minerals (SEM images after 3 weeks of reaction). 
 

  

Evolution of fracture 
surface damage 

Types of damage? 
Rates (How fast)? 

1m plications for flow? 



 
Presenter’s notes: Fluid composition largely dictated by rapid reaction of calcite – evidenced by rapid release and stabilization of Ca. 
In carbonate-rich shales, however, plateau in pH/Catot is due to achievement of equilibrium wrt calcite, while still maintaining at least 70% of initial 
Ca content. Conversely, plateau is due to near-complete removal of calcite for the carbonate-poor shales; there is insufficient calcite to reach 
equilibrium.  

Porosity evolution: 
dictated by mineralogy 
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Presenter’s notes: Barnett- Pohang light source data – after 3 weeks of reaction. 
Much more uniform reaction front develops as a consequence of calcite distribution in GR compared to Barnett. Similar generation of discrete 
porosity observed for Marcellus, and even Eagle Ford. This suggests it is not the abundance of carbonate, but its distribution. In GR, calcite forms 
somewhat of a cement between nicer crystals of dolomite, quartz, and analcime, whereas in EF it is big chunks, or remnants of shells, that are not 
necessarily well exposed to the fluid.  

Rapid reactions controlled by 
calcite 
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Presenter’s notes: Sample was initially dry; so rxn front is a combination of imbibition and reaction. Collected at SSRL. 

  

Physical damage: Secondary 
porosity 

Carbonate-poor Marcellus Carbonate-rich Eagle Ford 

• Physical protection of carbonate is important 



 
Presenter’s notes: Sample was initially dry; so rxn front is a combination of imbibition and reaction. Collected at SSRL. 

  

Physical damage: Secondary 
porosity 

Carbonate-rich Green River 

A. Kiss et al. (2016) in preparation 

Generation of 
uniform reaction 
front that propagates 
approximately 
proportional to t0 5 

Green River shale reacted for 5 h 
at 80 C, imaged at 1 h intervals 
with synchrotron radiation 



 
Presenter’s notes: SLAC has been part of this effort from the beginning and we intend to participate in the funding. 

  

Physical damage: Secondary 
porosity 

Carbonate-rich Green River 

Rates: fast (few hours) 

Damage zone thickness: approaches mm 

Secondary porosity: potential for capillary barrier 

Affects mechanical properties of fractures 

A. Kiss et a/. (2016) in preparation 

Generation of 
uniform reaction 
front that propagates 
approxi mately 
proportional to tO S 

Green River shale reacted for 5 h 
at 80 C, imaged at 1 h intervals 
with synchrotron radiation 



 
Presenter’s notes: Sample was initially dry; so rxn front is a combination of imbibition and reaction. Collected at SSRL. 

  

Iron oxidation I precipitation 

• Under what conditions does iron 
oxidation occur? 

• Rates? 
• Where are precipitates localized? 
• What phases occur? 



 
 

Presenter’s notes: SLAC has been part of this effort from the beginning and we intend to participate in the funding. 
  

Pyrite dissolution 
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Presenter’s notes: Organics in fracture fluid accelerate iron oxidation. 

  



 
 

Presenter’s notes: We have to use a SR microprobe to do this  cuz electrons don’t penetrate, aren’t sensitive enough, don’t give speciation.  
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Presenter’s notes: We have to use a SR microprobe to do this  cuz electrons don’t penetrate, aren’t sensitive enough, don’t give speciation. 
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Geochemistry?

• Geochemistry controls permeability

permeability (under explored)

• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions

• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides

• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces

• Fe redox: can be driven by  DO and pH changes

Pulling this together

 
 

Presenter’s notes: SLAC has been part of this effort from the beginning and we intend to participate in the funding. 
 
 

  



Chemical model: Iron 

oxidation and precipitation
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Presenter’s notes: Marcellus specific Fe-bearing minerals: Fe-bearing dolomite: 0.2 wt%; siderite: 0.5 wt%; pyrite: 4.6 wt%; ankerite (basically 
dolomite with Fe, Mn, Mg solid solution): 0.5%; Fe-bearing chlorite: 4.2 wt%. 

 

  



Chemical model: Iron 

oxidation and precipitation

34

(s)

(s)

(Fe3+)

Carbonate 

dissolution

Frac fluid

Organic-

accelerated 

Precipitation

Iron release

Bitumen release

 
 

Presenter’s notes: Marcellus specific Fe-bearing minerals: Fe-bearing dolomite: 0.2 wt%; siderite: 0.5 wt%; pyrite: 4.6 wt%; ankerite (basically 
dolomite with a Fe, Mn, Mg solid solution): 0.5%; Fe-bearing chlorite: 4.2 wt%. 

 

  



Accomplishments to date

Advanced knowledge baseline in following areas:

 Identified key processes / regimes

 Quantified reaction rates

 Characterized physical/chemical damage

 Quantitative geochemical model 

 Concept model for iron behavior Concept model for iron behavior 

 Concept for kerogen behavior

 Constraints on U behavior

 Presented results at national/international meetings

 3 Manuscripts in submission/preparation



Summary and conclusionsy
Conclusions
Dissolution rapidly damages fracture surfaces (hours)Dissolution rapidly damages fracture surfaces (hours)
Mineral precipitation causes matrix damage (days)
Primary control: pH (carbonate): Rates, extent
Important secondary controls on rates: Mineral texture, organics



Summary and conclusionsy

Conclusions
Dissolution rapidly damages fracture surfaces (hours)
Mineral precipitation causes matrix damage (days)
Primary control: pH (carbonate): Rates, extenty p ( ) ,
Important secondary controls on rates: Mineral texture, 
organics

Lessons Learned
Rapid formation damage follows fracture fluid everywhere
Large variations in pH are bad for formations prone to iron g p p
scale
Organic iron-control additives should be carefully evaluated 
Shale matrix is important location for mineral precipitationS a e at s po ta t ocat o o e a p ec p tat o
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Geochemistry?

• Geochemistry controls permeability

permeability (under explored)

• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions

• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides

• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces

• Fe redox: can be driven by  DO and pH changes

Looking forward: 

New model for 

damage zone (‘skin’)

 
 

Presenter’s notes: SLAC has been part of this effort from the beginning and we intend to participate in the funding. 



Damage zone (‘skin’)

1 m

g ( )

Diffusive

QUESTIONS:
• What is the impact of damage zone on production?

Diffusive 
flow10 mm

p g p
• How to minimize?

OBJECTIVES:OBJECTIVES: 
• Image/model geochemistry and flow in damage zone
• Assess reservoir-scale impact on gas/fluid flow
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