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Abstract

Brittleness evaluation plays an important role in unconventional oil and gas. However, the definition of brittleness is controversial and the
models for brittleness evaluation have no reliable theory to support them, which makes brittleness evaluation unreliable. Rock failure is a
process of energy dissipation and release. The energy dissipation leads to plastic deformation and damage of rock, while the releasable strain
energy results in abrupt structural failure of rock. In this study, brittleness evaluation has been done in terms of energy. By defining it in terms
of energy, rock brittleness from different areas can be compared. The influence factors ignored by other models of brittleness evaluation, such
as confining pressure, temperature, and rock texture, can be addressed. Cyclic loading-unloading tests under different confining pressures have
been done in order to investigate the effect of energy dissipation and release on rock failure. Most of the input energy is converted into the
elastic strain energy during this process and the rest is dissipated. The energy dissipation cannot be released after unloading, while the elastic
strain energy does. Therefore, the unloading curve normally falls below the loading curve to form a hysteresis loop. Then, the elastic strain
energy and the energy dissipation of rock failure can be calculated from stress-strain curves or corresponding formulas in this paper. Our study
shows that energy release leads to rock failure abruptly and energy dissipation determines the degree of rock fragmentation. Usually, the larger
the energy dissipation during the process, the smaller the fragments after rock failure. Also, the energy dissipation of brittle rock stays low
before failure and increases sharply when the failure happens, between which the ratio is usually less than 1:5. For ductile rock, there is
relatively less difference in energy dissipation before and during the failure. This is because more energy is converted into plastic energy
instead of the energy that increases the degree of rock fragmentation. The result is that even though the rock is failure, it does not break into
pieces. Therefore, by comparing the value of energy dissipation and release not only could we evaluate rock brittleness, but also predict the
degree of rock fragmentation after rock failure.
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