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Abstract

Seismic is often considered a luxury or a “nice-to-have” item. For its cost, customers often feel that they do not get full value or “bang-for-the
buck”. In Unconventional plays, which are driven by fast and dense drilling and completion engineering, this can be especially true. However,
with advanced processing and analysis, a few innovative work-flows, and some creative-thinking, 3D Seismic and Microseismic can be applied
to everyday well performance and asset development issues. In this article we will present examples from the Eagle Ford and Wolfcamp in
which 3D Seismic and Microseismic provide practical insights into:

« the effect of faults and fractures on well performance

* the cumulative effect of the subtle interplay of static and dynamic reservoir characteristics
+ understanding and predicting unwanted water production

* the effective vertical placement of horizontal wells

» the placement and spacing of wells and hydraulic fracture stages

It is important for geoscientists to remember that while important reservoir characteristics (both static and dynamic) can be derived from
seismic and microseismic attributes, this information and understanding is only truly useful if it can be integrated and calibrated with
engineering and production data. In fact, to be truly practical, seismic and microseismic must provide predictive information, in a 3D earth
model, which can then be proactively applied by engineers to their development plans, well plans, and completion designs.
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Gates Ranch Proper — Individual Well Performance
Normalized actual results versus internal 7.2 Bcfe P50 curve and P90 PUD booking curve
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Rosetta Resources - Gates Ranch

| Infill drilling in 3D -

\. \[ vertical infilling — puts

\\ | increased demands on

\___ 29 Piot well planning and
lateral placement

Source: Rosetta Resources
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Eagle Ford - Outcrop - Lozier Canyon, South Texas

T L ; i Spectral

Note the level of vertical
heterogeneity over just 50 meters
(175 ft) of the zone of interest
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3D Geomodel for Lateral Placement

Eagle Ford - Lozier Canyon
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Fault & Fractures — 15t Order Impact on Productivity

Fracture Architecture in Layered Rocks
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Fault Probability Attribute — South Texas

(derived from incoherence)
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Incoherence & Max Curvature co-rendered with
Max Monthly Gas Production
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W

GGS - Patron Grande 3D
McMullen County




GGS - La Salle Grande 3D
La Salle County, Texas




Ambient Seismic (Semblance) co-rendered with
3D Seismic (Fault Probability) - Eagle Ford

5"1 from the ambient

<
=4

GGS - La Salle Grande - I . seismic highlights
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Azimuthal Anisotropy with Max Monthly Gas
Production — Eagle Ford

_ 5,280 ft 80 mi? / 207 km?

2aB% High magnitude
M azimuthal
: anisotropy identifies
microfractures,
differential stress,
overpressure

GGS - Patron Grande 3D
McMullen County




High Heat Flow Promotes:

* Accelerated
hydrocarbon generation

* Differential Stress

* Overpressure

* Microfracturing

see Berg & Gangi — 1999,
AAPG v83 n5
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Geothermal Resource of the United States

Locations of Identified Hydrothermal Sites and
Favorability of Deep Enhanced Geothermal Systems (EGS)
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Resource / Reservoir Characteristics

that drive productivity

o TOC Static & Dynamic Proxies
o Porosity for Producibility

o Thickness

o Facies

o Brittle/Ductile Quality
o Differential Stress

o Stress Field Orientation

o Faults & Natural Fractures

o Qil & Water Saturation
o Pressure

Can we find proxies for
these in seismic
attributes?

How do we include
engineering data?

How do we capture the
cumulative effect?




Seismic for Unconventionals T
High channel count, full azimuth, long offset data B
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Eagle Ford
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Workflow Example - Permian Basin - Wolfcamp
Resource Characterization — Earth Model Process

INPUTS S Seismic inversion and
Layer-Based modefing petrophysical modeling Reservoir properties model

‘ Seismic horizons ‘

I Formation tops l

‘ Petrophysical data |

[Setamic atraoetos | 4’

‘ Completion data ‘ ;'5

‘ Production data ‘

ALL 4 Formations
CC:0.85

Optimized wellbore
geometries

v

| Higher IPs and EURs I

()
3
3
g
E

Multivarlate analysis Well Planmng & Field Optimization

17
Source: Laredo Petroleum
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3D Seismic Attributes

Amplitude and

Rock Mechanical ,
Anisotropy &

Structural Attributes Frequency Attributes Properties Additional Attributes
[ l 1 r l 1 r 4 1 f_%
1)  Amplitude 25) Spectral Decomposition 10Hz 48) P Impedance 66) HTI Magnitude
;) Relative Amp Change 26) Spectral Decompos!t!on 12Hz 49) Shear Impedance 67) HTI Vfast Azimuth

) Isochore 27) Spectral Decomposition 14Hz 50) P-Wave Velocity _

4) Depth 28) Spectral Decomposition 16Hz _ 68) VTI Eta Field
5)  Envelope 29) Spectral Decomposition 18Hz 51) S-Wave Velocity 69) WOR Models
6) Phase 30) Spectral Decomposition 20Hz 52) Density

7) Incoherence 31) Spectral Decomposition 24Hz 53) Bulk Modulus

8)  Fault Probability 32) Spectral Decomposition 28Hz 54) Shear Modulus

9) Distance to faults 33) Spectral Decomposition 32Hz 55) Vp/Vs

10) Kshape 34) Spectral Decomposition 36Hz . , .

11) Kmaxmag Azimuth 35) Spectral Decomposition 40Hz 56) Poisson’s Ratio

12) Dip Azimuth 36) Spectral Decomposition 45Hz 57) Young’s Modulus

13) Time Dip 37) Spectral Decomposition 50Hz 58) Lambda

14) Kmax Curvature 38) Spectral Decomposition 55Hz 59) Lambda Rho

15) Kmaxmag Curvature 39) Spectral Decomposition 60Hz 60) Mu

16) Kmean Curvature 40) Spectral Decomposition 60Hz

17) Kmin Curvature 41) Dominant Frequency 61) Mu Rho

18) Kneg Curvature 42) Instantaneous Q 62) Relative Zp

19) Kpos Curvature 43) Average Frequency 63) Relative Zs

20) Krms Curvature 44) Sweetness 64) Relative Density

21) Kgauss Curvature 65) Frac Factor™

22) Kstrike Curvature
23) Planarity
24) Linearity
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Step 2: Define Multivariate Relationships & Relate to IP

36 Wells — 0.81 Correlation Coefficient
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Contrasting Upper Wolfcamp Lookback Examples
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Cumulative Oil Production (BO)
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Middle Wolfcamp Targeting Uplift Example

Middle Wolfcamp Lookback & Type Curve
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Summary

Unconventional Well Productivity is a function of the
interplay of many static and dynamic characteristics requiring

an integrated, multivariable solution
Seismic attributes can be proxies for these characteristics

You can use seismic & engineering attributes to generate
predictive 3D models of reservoir properties and production

These models allow you to localize or customize well and
completion design

Recent innovations in ambient seismic processing allow you
to characterize active natural fractures.

ross.peebles@globalgeophysical.com
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