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Abstract

During the past decade, there has been a continuing surge in the production of unconventional resources, accompanied with
which is the great challenge and opportunities in unconventional resources research. Hydraulic fracturing technique is used to
create fractures, enhance permeability and therefore economical production of the unconventional resources. The resulting
fractures and their spacing (density) inside the stimulated reservoir volume (SRV) is a key factor in economical production from
these very low permeability resources. It is believed that gas production enhanced by increasing fracture density resulted from
hydraulic fracturing. However, there is no study about effect of fracture density on production from gas condensate
unconventional resources. Eagle Ford shale is considered as one of the most important oil and gas shale plays in North America.
In this study, we focused on finding the optimum fracture spacing (density) to maximize the production from the Eagle Ford gas
condensate window.

In this study, we modeled a SRV in the Eagle Ford gas condensate window. Based on MICP experiment results and pore-throat
size distribution of an Eagle Ford shale sample, the pore volume of the reservoir around the hydraulic fracture was divided into
five regions. The physics of multiphase flow of gas and condensate were modified in order to take into account the effect of
pore size on phase behavior, permeability and non-Darcy flow and therefore production from Eagle Ford gas condensate
window. For each pore size, a specific permeability and PVT properties were assigned. Organic and inorganic pores with
different wettability preferences were randomly distributed in the model with activated desorption mechanism in organic pores.
We considered fracture spacing of 1601t, 80ft, 40ft, and 20ft inside the SRV and analyzed the effect of fracture density on
production.
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Results indicated that the non-Darcy flow and desorption mechanisms are absent in the early stages of production where the
pressure is significantly high. However, as the reservoir depletes, slip and transition flow occurs, which results in an increase in
apparent permeability and the adsorbed phase starts to desorb from the rock surface. Moreover, decreasing fracture spacing from
160 ft to 20 ft increases cumulative gas production. On the other hand, there exists an optimum fracture spacing for condensate
production. Low fracture spacing (20 ft) caused more condensate dropout because of significant pressure drop. Thus, while the
general belief is that higher fracture density results in higher gas production, the results of this study revealed that cumulative
condensate production decreases for higher fracture densities in long-term production due mainly to the condensate drop out
effect.
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Introduction

« Hydraulic fracturing technique is used to create fractures
and high permeability region.

« Warpinski et al. (2008) investigated the effect of fracture
density on production from shale gas reservoirs.
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Do we have the same physics of fluid
phase behavior and transport in
unconventionals?

Loucks et al. (2009)
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Introduction

* Pore-wall proximity effect on phase behavior
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Introduction

« Two-phase envelope change due to confinement effects:
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Objective

« Optimum fracture density in the Eagle Ford gas
condensate window

» Phase behavior change in nanopores
» Permeability as a function of pore size

» Effect of Non-Dacry flow and desorption
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Pore throat size distribution
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Mean pore size vs. permeability/porosity
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Pore size distribution
8
3 10 nm 1
‘aET7 ] 39% vol. X-7
3 15 nm
g 6 - 29% vol.
[o]
o
S5 -
o
£
o
247
©
%3 . | 30 nm
E 5 nm 12% vol.
s 5 | 10% vol.
o
©
® 1 Pore size > 40 nm
g “f\l 10% vol.
=2 M"‘-\.._
0 i “,\ et /\mhw; “r’ o

1 10 100 1000 10000 100000
Pore throat diameter (nm)



The University of Texas at Austin

Petroleum and Geosystems

Engineering
Cockrell School of Engineering

Reservoir model

° Dual'permeabi”ty model Propped Hydraulic Fracture
° Eag|e Ford gas Condensate Unpropped Induced Fracture
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Reservoir model
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Pore size distribution
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Confinement effect

Under confinement
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PVT and Permeability correction

effect
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Effect of non-Darcy flow

* Non-Darcy flow occurs when mean free path of molecules
are in order of pore radius.

Laminar flow :Darcy’s equation
Turbulent flow: Forchheimer’s equation
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Effect of non-Darcy flo
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Desorption mechanism

« (Gas exists in both adsorbed and free phase in shale
resources

« TOC in Eagle Ford: 3-7 wt.%
* Considered TOC: 5wt.%
« Randomly distributed in the model
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Desorption mechanism

« Extended Langmuir isotherm model
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Fracture density effect
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Fracture density effect
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Fracture density effect
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Condensate drop-out
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Conclusions

» Considering phase behavior modification in nanopores has a positive impact
on condensate production while applying permeability distribution has a
negative impact on production.

 Non-Darcy flow does not have significant impact on production at high
pressures. This effect becomes quite significant for laboratory low operational
pressures.

« Desorption has a negligible effect on gas and condensate production from
this reservair.

* Increasing fracture density improves cumulative gas production and short
term cumulative condensate production forecasts. But, the long term
cumulative condensate production decreased as the fracture density
increased.
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* Pore proximity effect on ethane density @ p=600 psi , T=28
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Due to Pore proximity

4500 -~
: —i— Bulk
*I == critical pointl
4000 - |
Group # Component % mole 1 =t==25nm
! —&— critical point 2
1 CH4 80
3500 - == 17 nm
2 NC4 10
3 FC8 10 . —O— critical point 3
3000 4 Sum 100 i i ST cedes 7 nM
—_ - == critical point 4
©
2 2500 - m-— Surface condition
E —&— Reservoir pressure patl
S
@ 2000 -
(]
|
a
1500 -
1000 -
500 -
0 RV R T WD A .

-200 -100 0 100 200 300 400
Temperature (F) 42



The University of Texas at Austin

Petroleum and Geosystems

Engineering
Cockrell School of Engineering

* Non-Darcy flow occurs when mean free path of molecules
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Introduction

* Knudsen number is a measure of degree of rarefaction

K ==
d

« Smaller pores or lower pressure the higher the Kn

* The higher the Knudsen number the more deviation from
Darcy flow
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° Fln\l\l raoniNmMaco

Flow Equation Flow Regimes Knudsen Number Limits

Darcy CDIWU W W

/ Slip flow 0.001 <Kn < m
ransition flow 0.1 <Kn<10

olecular flow Kn > 10

Non-Darcy

Schaaf and Chambre (1961)

Tight and shale gas
reservoir
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\Velacitv nrofile in small canillarieg
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Fathi et al. (2012)
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Knudsen Number versus Pressure for Methane
° F | oW re for Various Values of k and r,,,, — Log-Log Plot

10
Model Legend:
Knudssariow #7005l caess
Methane Kk Lote
(===+) 10nD 125nm
(=) 100nD 3.96 nm
(==++=) 104D 125nm
[ ) 100uD 396 nm

0.1<Kn<10;
Transitional Flow

Xiao and Wei (1990)

Tight Gas +——ar—— —
Sands L 8 4}

Reservoirs

0.01<Kn<0.1; Slip Flow

Conventional -
Gas
Reservoirs

Knudsen Number, K . [dimensionless]

Kn<0.01; Continuum Flow

Pressure, p, psi
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Permeability correction

Klinkenbe

rg
correction
Permeabilit

y-correction

Knudsen
correctio
n

Valid for
slip flow

First-order
equations

Dx
ka = koo 1+F

Second-order
equations

Valid for slip
and
transition

A
Ka = koo (1 t5+ ﬁ) flow regimes
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First-order equations (Klinkenberg

I lon
S:OKllrn gr;[bce)rg )(1941), first introduced the effect of gas

slippage effect nn Annarant nermeability of gas

Dy
ko = koo (14 =

« Slippage factor
b

o

B 4c

r

~|
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Civet AvrAdAar Aanniatinne I linlsAanhAara
Various correlations for Klinkenberg’s gas slippage factor (D)

Model Correlation Comments/units
Klinkenberg (1941) by =4ch P /r ¢ is a constant close to unity
Heid et al. (1950) b = 11.419(kog) Y39

Jones and Owens (1979) by = 12.639(koo) "33

by = 13.851 (koo /p) 03
Sampath and Keighin K oo/9

1982
;loren)ce et al. (2007) by = B (koo /)02 Gas B-Value

Nitrogen 43.345

Air 44.106
Civan (2010) by = 0.0094 (koo /) ™V Correlation for Nitrogen. Units: by (Pa), koo (m?)

Units: bk (psi), koo (md), P (psi), r (nm), B (psi), » (nm) and ¢ (fraction)

Ziarani and Aguilera (2012)
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Beskok and Karniadakis
(1999)

Civan (2010)

Sakhaee-pour and Bryant | _ K, (0.8453+5.4576Kn +0.1633Kn’)

(2012)

Javadpour (2009)

Fathi (2012)

Bravo (2007)

a is rarefaction
coefficient and is a
function of Knudsen
number

K, = kw[1+a(Kn)Kn]{1+ AR }

1+ Kn

128 _ !
a(Kn)= 5. tan 1[4Kn°4J

K, :kw[l+a(Kn)Kn]{l+ AR }

T Inverse power-law
o(Kn)=—C expression for

K/:B rarefaction factor

1+

0.1<Kn<0.8

Double-slip theory

Three velocity profiles
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1 —
Khudsen number vs. pressure (T=100 F, pore size=10 nm)
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acropores: >50nm

‘ Capillary effects

Mesopores: 2-50nm

Micropores: <2nm

Fig. 1 - Pore size scales for different effects occurring in natural reservoirs.
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Adsorption model

« Extended Langmuir (EL) model
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