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Abstract 

 
During the past decade, there has been a continuing surge in the production of unconventional resources, accompanied with 
which is the great challenge and opportunities in unconventional resources research. Hydraulic fracturing technique is used to 
create fractures, enhance permeability and therefore economical production of the unconventional resources. The resulting 
fractures and their spacing (density) inside the stimulated reservoir volume (SRV) is a key factor in economical production from 
these very low permeability resources. It is believed that gas production enhanced by increasing fracture density resulted from 
hydraulic fracturing. However, there is no study about effect of fracture density on production from gas condensate 
unconventional resources. Eagle Ford shale is considered as one of the most important oil and gas shale plays in North America. 
In this study, we focused on finding the optimum fracture spacing (density) to maximize the production from the Eagle Ford gas 
condensate window. 
 
In this study, we modeled a SRV in the Eagle Ford gas condensate window. Based on MICP experiment results and pore-throat 
size distribution of an Eagle Ford shale sample, the pore volume of the reservoir around the hydraulic fracture was divided into 
five regions.  The physics of multiphase flow of gas and condensate were modified in order to take into account the effect of 
pore size on phase behavior, permeability and non-Darcy flow and therefore production from Eagle Ford gas condensate 
window. For each pore size, a specific permeability and PVT properties were assigned. Organic and inorganic pores with 
different wettability preferences were randomly distributed in the model with activated desorption mechanism in organic pores.  
We considered fracture spacing of 160ft, 80ft, 40ft, and 20ft inside the SRV and analyzed the effect of fracture density on 
production.  
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Results indicated that the non-Darcy flow and desorption mechanisms are absent in the early stages of production where the 
pressure is significantly high. However, as the reservoir depletes, slip and transition flow occurs, which results in an increase in 
apparent permeability and the adsorbed phase starts to desorb from the rock surface. Moreover, decreasing fracture spacing from 
160 ft to 20 ft increases cumulative gas production. On the other hand, there exists an optimum fracture spacing for condensate 
production. Low fracture spacing (20 ft) caused more condensate dropout because of significant pressure drop. Thus, while the 
general belief is that higher fracture density results in higher gas production, the results of this study revealed that cumulative 
condensate production decreases for higher fracture densities in long-term production due mainly to the condensate drop out 
effect.  
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Introduction 

• Hydraulic fracturing technique is used to create fractures 

and  high permeability region.  

• Warpinski et al. (2008) investigated the effect of fracture 

density on production from shale gas reservoirs. 

 

Warpinski et al., 2008 

35% increase 



Do we have the same physics of fluid 

phase behavior and transport in 

unconventionals? 

 
Deviation of fluid properties under confinement 

The mean free path of molecules is in the order of 

the pore radius 

Organic nano-pores store a significant portion of 

gas in form of sorbed 

Pore connectivity  

 

Loucks et al. (2009) 



Introduction  

• Pore-wall proximity effect on phase behavior  
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Introduction  

• Two-phase envelope change due to confinement effects: 
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Objective  

• Optimum fracture density in the Eagle Ford gas 

condensate window 

 

 Phase behavior change in nanopores 

 

 Permeability as a function of pore size 

 

 Effect of Non-Dacry flow and desorption  

 



Pore throat size distribution 



Mean pore size vs. permeability/porosity  

 
 

From permeability, porosity, and MICP experiments on the Eagle Ford shale 

samples 

𝑟𝑝𝑜𝑟𝑒 = 0.2829
𝑘

∅
+ 11.218 



Pore size distribution 

 



Reservoir model 

• Dual-permeability model 

• Eagle Ford gas condensate  
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Reservoir model 
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Confinement effect 
Under confinement Bulk state 

Pressure distribution inside SRV  

Condensate saturation inside SRV  

psia 

Condensate saturation 



PVT and Permeability correction  

effect 
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Effect of non-Darcy flow 

• Non-Darcy flow occurs when mean free path of molecules 

are in order of pore radius. 
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Effect of non-Darcy flow 
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Desorption mechanism 

• Gas exists in both adsorbed and free phase in shale 

resources 

• TOC in Eagle Ford: 3-7 wt.% 

• Considered TOC: 5wt.% 

• Randomly distributed in the model 

 



Desorption mechanism 

• Extended Langmuir isotherm model  
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Desorption Modeling 
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Fracture density effect 

  

(a) Fracture spacing = 20 ft. (c) Fracture spacing = 80 ft. (b) Fracture spacing = 40 ft. 

Pressure 
(psia) 

20 ft 40 ft 80 ft 

𝑆𝑅𝑉 = 5.54 ∗ 106𝑓𝑡3 𝑆𝑅𝑉 = 5.54 ∗ 106𝑓𝑡3 𝑆𝑅𝑉 = 5.54 ∗ 106𝑓𝑡3 



Fracture density effect 
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Fracture density effect 
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Fracture density effect 
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Condensate drop-out  
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Conclusions  

• Considering phase behavior modification in nanopores has a positive impact 

on condensate production while applying permeability distribution has a 

negative impact on production.  

 

• Non-Darcy flow does not have significant impact on production at high 

pressures. This effect becomes quite significant for laboratory low operational 

pressures. 

 

• Desorption has a negligible effect on gas and condensate production from 

this reservoir.  

 

• Increasing fracture density improves cumulative gas production and short 

term cumulative condensate production forecasts. But, the long term 

cumulative condensate production decreased as the fracture density 

increased. 
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• Pore proximity effect on ethane density @ p=600 psi , T=28 

°C 
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Introduction 

 
 

 

31 

U.S. EIA (2014) 



Z-factor 

 
12% 

23% 

3% 

6% 

Pore proximity effect on methane properties  



Reservoir model 1: 

Single porosity 
 

2 simulation 
cases 

Bulk condition 
Under confinement 

effect (pore size= 13 nm) 

Parameter Value 

Matrix permeability 149 nD 

Fracture conductivity 2 mD-ft 

Fracture half length 250 ft. 

Porosity 9.4 % 

Initial reservoir 
pressure 5000 psi 

Reservoir 
temperature 180 F 

Simulation time 30 years 



 

Effect of confinement on condensate and gas viscosity profiles 

15 years 

15 years 



 

15 years 

Effect of confinement on condensate saturation profile 
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Effect of confinement on production 
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Pore size variation and connectivity consideration 
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Results: different PVT regions are considered 
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Results: different PVT and permeability regions are considered 
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Results: Effect of different parameters on Cumulative condensate 

production (Model 3) 
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Results: Effect of non-Darcy flow 
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42 

two-phase envelope change 

Due to Pore proximity 

Group # Component % mole  

1 CH4 80 
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• Non-Darcy flow occurs when mean free path of molecules 

are in order of pore radius. 

 

Ziarani and Aguilera (2012) 

Darcy flow 
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Introduction 

• Knudsen number is a measure of degree of rarefaction 

 

 

• Smaller pores or lower pressure the higher the Kn 

• The higher the Knudsen number the more deviation from 

Darcy flow 



Introduction 

• Flow regimes 

 

 

 

 

 

 Schaaf and Chambre (1961) 

Tight and shale gas 
reservoir 



Velocity profile in small capillaries 

 

Fathi et al. (2012) 

Smaller pore 
size 
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Introduction 

• Flow regimes in tight and shale gas reservoirs 

 

Xiao and Wei (1990) 



Permeability correction 
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First-order equations (Klinkenberg 

correction)  
• Klinkenberg (1941), first introduced the effect of gas 

slippage effect on Apparent permeability of gas 

 

 

• Slippage factor 

 

 

 



First-order equations (Klinkenberg 

correction)  
 

 

Ziarani and Aguilera (2012) 



Second-order corrections Model Correlation Comments 
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Which flow regime? 

 



Apparent permeability calculation 

 



 

Flow 

Capillary effects 

Adsorption 

Fig. 1 - Pore size acales for different effects occurring In natural reservoirs. 



Adsorption model 

• Extended Langmuir (EL) model 

𝐺𝐿𝑖 =
𝑉𝐿,𝑖 𝑃𝑖 𝑃𝐿𝑖 

1 +  𝑃𝑗 𝑃𝐿𝑗 𝑗

 

Langmuir Isotherm curve 

𝐺 =
𝑉𝐿𝑃

𝑃 + 𝑃𝐿
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Effect of confinement on components mole fraction 

Methane 

Intermediate components  

Heavy components 
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