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Abstract

This study describes workflows to quantify the impact of natural fractures on the performance of shale wells. First, a method described by
White et al., (2014) is reviewed to illustrate the regression analysis approach which may be used on a small area where many image logs and
production are available. Then, a general workflow that combines Geophysics, Geology, and Geomechanics (3G) is discussed and applied to a
Wolfcamp well. The benefits of the 3G workflow are threefold. First, the quantitative impact of the natural fractures on the regional stress is
provided through the differential horizontal stress variation which impacts frac complexity. Secondly, an effective modeling technique which
accounts for the interaction between the hydraulic and natural fractures in creating the reservoir strain and drainage pathways is described and
validated using microseismic data. Thirdly, the ability of this model to identify the poor hydraulic fracturing stages due to the excessive or low
fracture density encountered along the wellbore is discussed.

The impact of natural fractures on the efficiency of a hydraulic fracture is quantified using geomechanical modeling that is able to identify poor
hydraulic fracturing stages clustered where there are too many natural fractures near faults or around low fracture density zones. The best
hydraulic fracturing stages appear to cluster where there are sufficient natural fractures to create complexity, and are often proximal to large
natural fracture trends associated with faults.

Building on the validated 3G workflow, a well placement workflow that takes into the account the quantitative impact of natural fractures on
the well performance is demonstrated on the considered Wolfcamp B well. The workflow provides the optimal position of a well in the
presence of natural fractures associated with a fault system that could produce undesirable water.
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Relationship between fractures and production

Histogram of natural fractures |
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Relationship between fractures and production

Production Log Interpretation ;
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Geomechanical Modeling

* The use of geomechanics is necessary to quantify the
interaction between hydraulic and natural fractures

* A new geomechanical technology (Aimene & Nairn 2014), that
is able to simulate the interaction of hydraulic fractures with
natural fractures opens new doors to derive a better
understanding of frac stage performance

 The new geomechanical technology relies on the use of the
Material Point Method (MPM) and a continuous description of
the fractures




Material Point Method (MPM)

* Powerful tool developed for solid dynamics problems o
(Sulsky, Chen & Schreyer, 1994)

* Meshless method: discretization into points, called
particles

il GGt

Deborah Sulsky, Zhen Chen, Howard L. Sohroyer
The University of New Mexico
Albuguerque, NM 87131

* At each time step, particles’ information are S
extrapolated to the background grid to solve the
equations of motion LT kR

» CRAMP is MPM extended to handle explicit fractures ~ FiEsEsl
(Nairn, 2003) :




Fracture Mechanics

e Elastic fracture mechanics is used to model material Stress field around crack tip
failure and fracture propagation

 The energy release rate G involved in the balance of
energies in fracturing media is used to compute stress
singularities and predict fracture propogation

* The fracture grows when G > G ;. .
 HF propagation criterion: direction of maximum energy T

release rate
G =J Integral



Inputs to the model
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Effect of Natural Fractures on J Integral

Stress J Integral

1 AJ Integral

1AJ Integral

AJ = ‘JF ) ‘JnoF

A higher stress field when the NF is near the HF
as a consequence of NF opening in a nearby rather than in far position

URTeC 2173459



Differential Stress

Elementary fault block stress rotation model
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A Wolfcamp Study

p!
| Midiand Basin |
o BB : .
] = “Delta log R” (excess electrical resistance)
Slaar,fonk > = Red intervals indicate hydrocarbons
L
g ‘ = Petrophysical analysis indicates significantly more oil in place
. Spraberry |
M. Spraberry i in the Wolfcamp and Spraberry Shale intervals in the Midland
Shale | ) ¢
g Basin compared to other major U.S. shale oil plays
Jo Miil Shale .,.)
RN 2
L. Spraberry il
Shake > Eagle Ford Barnett
Dean ¢ Condgr\s{ate | Corrxbof Niot:rara = Bfk‘l‘«.-n‘ - Marcellus
Wolfcamp A —> ;i % X i 1 ¢ P | - ] ‘ %
1 H 74 =
Wolfcamp 8 -> I§ i ] d S i | U
: ! f > 3 [ Y i 1
Wolfcamp C | ? : 1 K ‘,':-' § . ?
— d i = I -
Wolfcamp D ‘ ! 'l i f B : ;
“Cline" - 8| A ‘.5-‘- f 1 ¥
! )| 2 I 3 | i
Strawn i e : 3 i ‘ H t : 2
L] = ] |
- = 3 i ¥ ;
- i . e § ¢ :
Atoka Uyt il i : r !1 k - 2
e l __.‘3 — —l § } | ;'D;.
8amett }
Miss Lime - Source: PXD
Weodford | | 37

PXD investor presentation, 2014 URTeC 1934166



L] [ ] L]
- Well A: Distance vs. Fracture Density
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Figure 7- Two plots describe the worktlow for predicting fracture density and correlating that to production. Wells E and F are assigned &
predicted fracture density based on their average distance from the fault (top left). Using that fracture density the wells® production is estimated
using the regression (bottom left).
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PXD relating natural fractures to production

The Pioneer work is extended to examine the details of what
happens at each frac stage and identify the poor frac stages

Geomechanical modeling will be used to study the interaction
between the hydraulic fractures and the natural fractures



3G Workflow
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Validating the Differential Stress with MS

A. Interpreted B. Simulated Differential Stress
microseismicity
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Putting pressure in the HF and predicting the
I
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Validating Strain with MS

Bapargstiic, Discontinued “Poor”
sticudesfon stimulation

URTeC 2173459



Completion Optimization using AJ Integral
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Strain Map vs. Propped Volume Through Frac

A: Strain map B: Propped volume



eservolr Simulation Workflow
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B: Variable LGR around the frac stages
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Application to Eagle Ford Data

| UNCONVENTIGNAL ,
RESOURCES TECHNOLOGY CONFERENCE
FUELED BY SPE « AAPG « SEG

Investigating Natural Fracture Effects on Well Productivity: Eagle
Ford, La Salle County, Texas
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Figure 3: A) Dip azimuth (0-360 degrees) top Buda. B) Dip angle (filtered 0-2 degrees) top Buda. Contours on both images are top Buda subsea
ft, CI 100 ft (refer to figure 1). Numbers denote examples of main structural features that are evident ; 1) Relay ramp transfer zone, SW dipping
ramp with orthogonal (Spmi, parallel) fault/fracture features 2) Regional (Spmax parallel) through going large displacement normal faults (note
dashed black lines), 3) Transfer zone with regional SE dip, 4) Steeply dipping monocline.



Application to an Eagle Ford dataset

J Stress Anisotropy
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tress Rotation in an Eagle Ford Well

B | P

S A mmia e o e
Sy N e (e
R
A e 0 S o i
e S —— e e
N e T
\‘\-q,.._:-r’(’ ,- ,f,o
S § g

v

2 N

URTeC 2148347 SPE 176932



Oklahoma Induced Seismicity

Modified from Oklahoma Geologic Survey
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Can geomechanical modeling predict induced
seismic events?

Low SPE 176932



Results

* The use of the MPM and CFM technology to account for the
interaction between hydraulic and natural fractures provides
practical and quick completion optimization tools

 Quantifying the impact of natural fractures on fracing and
subsequent well performance may:
 Reduce stage inefficiencies
 Avoid remediation/faults
* Predict changes in the local stress field
* Predict zones with a high potential for induced seismicity?
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