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Abstract

Geological capture, utilization, and storage (CCUS) of carbon dioxide (COy) in depleted oil and gas reservoirs is one method to reduce
greenhouse gas emissions while enhancing oil recovery (EOR) and extending the life of the field. Therefore CCUS coupled with EOR is
considered to be an economic approach to demonstration of commercial-scale injection and storage of anthropogenic CO,. Several critical
issues should be taken into account prior to injecting large volumes of CO,, such as storage capacity, project duration, and long-term
containment. The storage capacity of CO; is estimated by methods used by the petroleum industry in the characterization of hydrocarbon
accumulations. The Jacksonburg-Stringtown Field, located in northwestern West Virginia, has produced over 22 million barrels of oil
(MMBO) since 1895. The sandstone of the Late Devonian Gordon Stray is the primary reservoir. Well log analysis is used to define four
reservoir subunits within a marine-dominated estuarine depositional system: barrier sand, central bay shale, tidal channels, and fluvial channel
subunits. A 3D geologic model was constructed with variable-quality data from 175 wells to estimate the storage capacity and optimize
simulation strategies to evaluate commercially-viable geological storage and EOR. Artificial neural network (ANN) of petrophysical log data
(Vsh, slope of GR, ILD, slope of ILD, and DPHI) were utilized as inputs and target outputs to train neural network to characterize reservoir
units. The ANN is a powerful tool to develop maps of critical reservoir parameters and focused simulation. The best regions for CCUS-EOR
are located in southern regions of the field. Estimated theoretical CO, storage is approximately 24 million metric tons.
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Abstract

Available Data

Geological capture, utilization and storage (CCUS) of carbon dioxide
(CO,) in depleted oil and gas reservoirs is one method to reduce
greenhouse gas emissions while enhancing oil recovery (EOR) and
extending the life of the field. Therefore CCUS coupled with EOR is
considered to be an economic approach to demonstration of
commercial-scale injection and storage of anthropogenic CO,. Several
critical issues should be taken into account prior to injecting large
volumes of CO,, such as storage capacity, project duration and long-
term containment. The storage capacity of CO, is estimated by
methods used by the petroleum industry in the characterization of
hydrocarbon accumulations.

The Jacksonburg-Stringtown field, located in northwestern West Virginia, has
produced over 22 million barrels of oil (MMBO) since 1895. The sandstone of
the Late Devonian Gordon Stray is the primary reservoir. Well log analysis is
used to define four reservoir subunits within a marine-dominated estuarine
depositional system: barrier sand, central bay shale, tidal channels and fluvial
channel subunits. A 3D geologic model was constructed with variable-quality
data from 175 wells to estimate the storage capacity and optimize simulation
strategies to evaluate commercially-viable geological storage and EOR.
Artificial neural network (ANN) of petrophysical log data (GR, slope of GR,
density, slope of density, and V_, ) were utilized as inputs and target output to
train neural network to characterize reservoir units. The ANN is a powerful
tool to develop maps of critical reservoir parameters and focused simulation.
The best regions for CCUS-EOR are located in southern regions of the field.
Estimated theoretical CO, storage is approximately 24 million metric tons.

Objective

The Gordon Stray formation is a high quality hydrocarbon producing reservoir
and represents an encouraging future target for CO, storage operations.

This study was an attempt to better define the depositional framework and
reservoir characteristics of the Gordon Stray formation within the
Jacksonburg-Stringtown field in northern West Virginia. These objectives
were achieved with the aid of well log data, online hydrocarbon production
archives, and sample reservoir hydrocarbon analysis.

Geologic Background
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Fig. 1 Oil fields with a minimum of one million barrels of documented oil production and large CO, stationary sources (metric tons) in the Appalachian basin
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Fig.2 Location of the Jacksonburg-Stringtown field is highlighted (Data from the US DOE Carbon
Storage and Utilization Atlas).
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The Jacksongburg-Stringtown field located in
northwestern West Virginia is a well-known oil and
gas producer. This fieldsits along the western edge
of the Burchfield syncline (Fig. 3).

Since discovered in 1895, this field has produced
over 22 million barrels of oil(MMBO). The average
well space is 13 acres. In 1981, this field started
waterflood program with a pilot utilizing a 35 acre
dual 5-spot pattern. After 1990, full-scale water flood
operations began. CO, flood play an important role
in the outcome of a waterflood.

Fig. 3 Map of the study area including the location of the Stringtown oil filed in West Virginia
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Fig. 6 Well location in study area
and permeability

Tab.1 Summary of Jacksonburg-Stringtown researct

which have measured core porosity Fig. 7 Well locations with conventional well logs
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Fig. 5 Measured Core Porosity and Permeability (Well API: 4709501125)
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Totally, 93 samples with both core data and
conventional logswere collected from 6 wells
in the Jacksonburg-Stringtown field(Fig. 6) as
training data to build up regression model to
predict porosity values.

Estuarine Model

Depositional facies and external geometry
determine the reservoir quality. Properly
identifying and characterizing the depositional

framework is the critical in determining the quality

of a hydrocarbon reservoir. Estuarine deposition
systems occur within drowned incised valleys

during an overall transgressive period, where sea

level rise overtakes sediment supply from marine
and terrestrial sources. There are two subtypes
of estuarine systems: wave-dominated and
tide-dominated estuaries (Fig. 9).

A ESTUARY

Fig9 Idealized wave-dominated estuarine system model showing depositional facies
and changes in relative energy (After Dalrymple et al., 1992)



Barrier Sand i<

Central Bay Shale

Tidal Channels

Gordon Stray

Nl

Fluvial Sand

1

e

=

Central bay

Upper estuary channels

field with idealize dmod . (API#47|0300595)

Fig. 10 Comparison of exampl tray interval gamma log signature from the Jacksonburg-Stringtown

The signature of the Gordon Stray
intervals relatively follows an idealized
estuarine vertical succession by
examining the logs from the Jackson-
burg-Stringtown field (Fig. 10).The
thinner upper sand is interpreted as the
estuary mouth deposit, meanwhile the
much thicker lower sand can be identified’
as tidal dominated deltaic deposits, and
inner interval is estuarine shale. The
lowest subunit is fluvial deposits.

Structure Model
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Fig. 14 Lower Gordon stray structure map.10 fts contour intervals.
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Fig. 17 3-D static geologic model of Gordon Stray interval in Jacksonburg-Stringtown
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Fig. 19 Mineral Composition an:

Mineral Composition of Gordon Stray
intervals was established (Fig. 19).
As Lower Gordon Stray shows, High
quality of sandstone and more poro
volume indicates that this intervals B e ovor Coron Sy s e et oGO, sparrcs
has high capacity of CO, storage. Estimated pressure at the top of the Lower
Gordon Stray reservoir subunit meets the requirements for CO, supercritical
state (1087 psi) and CO, miscibility (941 psi).

Methodology

Mathematical perceptron first proposed by McCulloch, are protype of neural
networkswhich mimicked the biological neuron behavior. Hérault and Jutten
describe the process of biological neuron transiting signals from one to
others(a).Mathematical neuron ,
( b) simplify the biological
neuron's signal bypass
process, and then weighted
sum of inputs ( ¢) can be
rescaled by the activation
function ( d). Combination

alysis of Gordon Stray intervals.
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Fig. 21 Mathematical perceptron are protype of neural networks which mimicked the biological neuron behavior.



Artificial neural networks can learn anything it wants to express, and

provides a nonlinear mapping between inputs and outputs by their intrinsic
ability. However, the process of minimizing convergence rate to zero during

network training can cause overtraining, also known as overfit, due to

memorization of the training set.

Principal component analysis also was

The build of BPNN Model

applied to optimize ANN structure and X, O W

reduce overfitting effect. Here, two
evolutionary algorithms: Genetic
algorithm (GA) and particle swarm
optimizatin (PSO) are applied to
optimizing the weights and biases

for each single node in back-propag-
ation neural network (BP-NN), and to
minimizing the effect of overfitting. In
order to evaluate the performance of BPNN training and testing process, the

O
Input Hidden Output

I Set up parameters of PSO

Training the BPNN

| Calculate the fitness value |

Termination criterion?

Fig.22 BP neural network topology

mean squared error (MSE) of the network is defined as follows:

1

MSE =L 37" [v,(0)-T,(0)]

m

New population

Fig. 30 The flowchart of BPNN optimized with particle swarm
optimization (PSO-BPNN).

I Gaussian Random Function Simulation
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Table 2 Typical parameters used for training BPNN regression model with different learning algorithms. A
o
b ) Parameter Value Parameter Value 5
Input layers nodes 6 Hidden layers nodes i
Output layers nodes 1 Termination criterion (€) 0.001 N
x(k+1) Special parameters for genetic algorithm §
e Maximum Generation 150 | Population size [ 50
Selection probability | Rand value, (0,2) | Crossover probability |04
v.(k) Mutation probability |01 | chromosome length |57
. » v, (k +1) Special parameters for particle swarm optimizati
Maximum Generation 150 Population size 50 H
N Cognitive efficient (¢, ) 15 Social efficient (¢, ) 15 5
x,(k) vi (k) Initial inertia weights Wagare 0.9 Final inertia weight Weng 0.4
£
5, ) Regression: R=0.8625 .
8.

6
Fig. 29 lllustration of PSO velocity = s
and particle position update for particle z R
X; in a two-dimensional search space g 3,
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Fig. 34 Well log with cored and predicted porosity (Blue circle is predicted porosity, green
‘ Fig. 31 Predicted porosity vs. core pososity stare is cored porosity).

Genetic Algorithm (GA)-BPNN
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Fig.23 Genetic chromosome representation of Fig.22.
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Fig. 28 Predicted porosity vs. core

[ The build of BPNN Model |

!

| Initialize the Network |

| Initialize the population (weights & biases)l

| Calculate the fitness value I

Termination criterion?
No

Output result

Petrophysical Model- Porosity Model

Geostatistics Analysis
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Fig. 35 Major direction viarogram
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Fig. 24 Flow chart of GA-BPNN model used for porosity prediction

Fig.37 porosity model with Sequential Gaussian Simulation

Fig.38 porosity model with Gaussian Random Function Simulation

Result

| Moo,=A*H,"9,*(1-8,)*B*Peo: E

Table 3. Storage efficiency factors and Resulting storage resource for the P, P, and P, in Jacksonburg-Stringtown.

Parameter Symbol |Unit P1o Pso Pso
Geoa= Arhy e (1-541)-B-Pcosies E
Eficiency Factor Total Pore Volume (ft3) Wiaw tft3 1.1 1.3 1.408
PoreVolume 0, Resewic Water Saturation Swi % 0.35 0.25 0.1
Vater Stuaton | 0l Fornation Formation Volume Factor |B Bbl/STB|1.4 1.4 1.4
;‘:rf;:,,',: me=atel Average CO2 Density Max | pco2 Ibs/ft> |48.0 48.0 48.0
ORIV b Efficiency Factor E % 0.1 05 |09
- Reservoir CO, Storage Mass | Mco Mt 24.0 163.8  [383.2

Summary

1.GR,slop of GR, density, slop of density, and V, can be utilized as inputs
and porosity can be utilized as output to build up the Back-Propagation
Neural Network (BPNN).

2.Artificial neural network performance very well to predict the the porosity
value with high correlation coefficient.

3.Genetic Algorithm(GA) and Particle Swarm Optimization (PSO) were
used to optimize BPNN structure. GA performance better then PSO.

4.Most confidence storage capacity is 24 million tons, and most risk
storage capacity is 383 Mt.

5.In future, CO,-EOR numerical fluid-flow model should be constructed.
Examining the economic feasibility.
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