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Abstract 
 
The importance of the evaporite-hydrocarbon association is clearly seen in a compilation of giant oil and gas discoveries across the period 2000-
2012. Of the 120 giant oil and gas fields discovered in that period some 50% were hosted in marine carbonates and 15% in lacustrine carbonates, 
meaning about a third of new giant discoveries were in siliciclastic reservoirs. Some 56% of the oil and gas giants had an evaporite seal, with 82% of 
the marine carbonates having an evaporite seal and 91% of the lacustrine carbonates having an evaporite seal. Clearly, carbonate reservoirs with 
evaporite seals constitute the majority of the giant oil and gas discoveries in the period 2000-2012, and the proportions of this association are likely to 
increase in conventional discoveries across the next decades. Predicting the position and quality of potential reservoirs in evaporite terranes is 
difficult without integrating notions of feedback between deposition, diagenesis, and structural evolution. Therein lies the difficulty in placing 
evaporite-associated reservoirs and traps in classic terms of structural, stratigraphic, and diagenetic traps. When classifying a field with an evaporite 
trap, the fact that salt is so mobile, so soluble, and so diagenetically active, separates it from other trap styles in a petroleum system. It means that a 
salt unit, by its comings and goings, plays ongoing and multiple roles in generating reservoirs and traps from the time of deposition through 
diagenesis to structuring. Tying oil and gas field occurrences to a static and categoric breakdown is near impossible as salt-induced structuring, 
diagenesis, and deposition are often penecontemporaneous and in a state of intimate feedback with adjustments continuing throughout the 
mesogenetic and telogenetic realms. 
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Presenter’s notes: The mineral Dawsonite is named in his honor.  In his various books on geological subjects he maintained a distinctly theological 
attitude, refusing to accept the evolution of humans from “brute” ancestors. 
  



E V A P O R I T E S A R E V O L U M E T R I C A L L Y
T R I F L I N G

( < 2 %  W O R L D ’ S  P H A N E R O Z O I C  S E D I M E N T S )



L E S S  T H A N  2 %   
• 50% of world’s carbonate reservoirs (this talk)

• All the world’s supergiant oil and gas fields in thrusts (this talk)

• All supergiant sedimentary copper deposits (halokinetic brine 
focus) 

• 50% of world’s giant SedEx deposits (halokinetic brine focus)

• 80% of giant MVT deposits (sulphate-fixer & brine interface) 

• World’s largest Phanerozoic Ni deposit (meta-igneous) 

• Many larger IOCG deposits (meta-evaporite, brine and 
hydrothermal) 



 
 

 
Presenter’s notes:For most commodities the presence of salt is beneficial in terms of its volume and richness. 

 
  



D R I V E R S ?  

• Seal - bedded and halokinetic 

• Fault stopper 

• Trap focus 

• Source rock (mesohaline carbonates) 

• Fluid flow - focus and mixer (stabilizer) 

• Metal carrier or fixer (reductant) 
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S E A L  T O  M A N Y  L A R G E R  
F I E L D S  



S A L T S E A L I S T I G H T &
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Downey, 1984
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A N C I E N T E V A P O R I T E S E A L S A R E
D E P O S I T I O N A L L Y E X T E N S I V E

Warren, 2016



M A R I N E E V A P O R I T E
S E A L S

• Two styles of ancient evaporites

• platform evaporites (mostly sulphate-dominant and greenhouse eustatic)

• basinwide (mostly halite-dominant and tectonic)

• Neither style has a same-scale Quaternary-age counterpart

• today is ice-house - but platform evaporites (except intracratonic) need
greenhouse ecstasy

• last basinwide evaporites were deposited in the Late Miocene soft suture belt
that was the Late Miocene Mediterranean (Messinian salinity crisis)



 
 
 

Presenter’s notes: Drawdown needs hydrographic isolation (no surface connection) but ongoing seepage supply. 
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P L A T F O R M & I N T R A C R A T O N I C
E V A P O R I T E S M A K E E X C E L L E N T

S E A L S

• laterally extensive

• intercalated with carbonates and other porous sediment

• early stages of basin isolation and brine layering favour mesohaline
source rocks

• early brine reflux dolomitization

• TSR association (late-stage dolomites)
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B R I N E D E N S I T Y D I A G E N E S I S

• Evaporites drive reflux or dissolve at various times in the subsurface so act as both a brine
source and a focus to brine flow

Sichuan Basin

Delaware Basin

Arabian Basin

Western Canada

Zechstein Basin

Aptian salt basins

Jiang et al. 2013

Lower Triassic Feixianguan Formation, NE Sichuan Basin, China
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C O N T I N E N T A L P L A T E - M A R G I N
B A S I N W I D E S B E C O M E H A L O K I N E T I C

• widespread and thick halites

• form in tectonically active regions (incipient oceans and continent-
continent collisions)

• favour minibasin(depopod) loading in marine and continental
settings

• association with structural traps

• subsalt, intrasalt and suprasalt giant fields



Pilcher et al., 2011 
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E V A P O R I T I C C A R B O N A T E S C A N B E
O R G A N I C R I C H



M E S O H A L I N E S O U R C E R O C K S
SaltWork database version 1.6



D R I V E R S ?  

• Seal - bedded and halokinetic 

• Fault stopper 

• Trap focus 

• Source rock (mesohaline carbonates) 

• Fluid flow - focus and mixer (stabilizer) 

• Metal carrier or fixer (reductant) 

n

c

e

etic 

carbonates) 

er (stabilizer) 

ctant) 

Evaporite 

Tight 

Ductile Conductive 

Viscous 

Newtonian  

Soluble  



S A L T  I S  M O R E  T H A N  A  S E A L ,  T H E N … . .

• Reservoir Quality Control (Depositional & diagenetic)

• Reservoir Paleotopography (Saltern versus Mudflat)

• Trap Position (Bedded & Halokinetic/Structural)

• Source Rock Quality in Evaporitic Settings
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