Scaling relationships in modern fluvial systems provide useful guidance for interpretation of the stratigraphic record of the McMurray Formation, within the eastern margins of the Alberta foreland basin. Important scaling relationships include width:thickness of channel-belt sand bodies that form under normal flow conditions (~70–300:1), and the width:thickness of associated abandoned channel fills (~10–30:1). In addition, predictable transformations occur as a river system goes from normal flow through its backwater reach and begins to feel the effects of sea level. Rates of lateral migration and resultant channel-belt width decrease significantly, the channel aggrades, and avulsion is common: channel-belt width-to-thickness ratios within the backwater reach are therefore significantly less (20–50:1), and sand bodies are encased in muddy flood-basin or delta-plain strata. The backwater reach for large systems can be hundreds of kilometers upstream from a coeval shoreline. Detrital zircon signatures show the McMurray represents a true continental-scale fluvial system, the Mississippi or Amazon of its time, with a source terrain that stretched from the Appalachian Cordillera in the SE US to the Western Cordillera: thicknesses of McMurray point-bar sand bodies commonly exceed 30-35 m, which is consistent with a continental-scale system. The well-imaged McMurray in Athabasca displays channel-fill width:thickness ratios consistent with those from modern rivers, and sand body width:thickness ratios >100:1, typical of amalgamated channel belts within that part of a river system that is characterized by normal flow through the uppermost limits of the backwater reach. With channel depths that exceed 30 m, backwater lengths would have been in the range of 4-600 km, and, by this reasoning, contemporaneous shorelines would have been very far to the north. It would be rare to see significant tidal influences on sedimentation this far upstream in any large, inherently low gradient river, and it would be perhaps unprecedented to see brackish conditions extend upstream more than 100 km or so from a large river's mouth. There is, as a result, something of a conundrum with the interpretation of McMurray environments of deposition and paleogeography, because sedimentological and ichnofacies characteristics in these deposits have historically been, and still are in many cases, interpreted to record brackish and/or tidal influences, and a tidally-influenced fluvial system.

Selected References


Hudson, P.F., and R.H. Kesel, 2000, Channel migration and meander-bend curvature in the lower Mississippi River prior to major human modification: Geology, v. 28/6, p. 531-534.


THE MCMURRAY CONUNDRUM

CONFLICTING INTERPRETATIONS OF ENVIRONMENT OF DEPOSITION AND PALEOGEOGRAPHY

Mike Blum and Deserae Jennings
Department of Geology
The University of Kansas
Lawrence, Kansas USA

M. Blum thanks former colleagues at Imperial Oil and ExxonMobil Upstream Research for sharing ideas, and releasing data pertinent to this presentation.
General Outline

• Overview of Fluvial Scaling Relationships and Inherent Downstream Transformations

• Application to the McMurray System, Alberta Foreland Basin:
  • The McMurray as a continental-scale river from detrital zircons and point-bar scales
  • The McMurray conundrum
  • The McMurray is a fully fluvial, highly migratory river with possible tidal influence (maybe?), but well upstream from any plausible brackish water influence associated with marine environments
### Source-to-Sink Scaling Relationships

<table>
<thead>
<tr>
<th></th>
<th>Drainage basin area (km²)</th>
<th>Fluvial system length (km)</th>
<th>Fluvial sand body thickness (m)</th>
<th>Backwater Length (km)</th>
<th>Fan Length (km)</th>
<th>Fan Width (km)</th>
<th>Fan Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>10,000</td>
<td>75-100</td>
<td>5-7</td>
<td>10-30</td>
<td>&lt;25</td>
<td>25-50</td>
<td>&lt;1000</td>
</tr>
<tr>
<td>Moderate</td>
<td>100,000</td>
<td>750-1000</td>
<td>10-15</td>
<td>50-100</td>
<td>100-200</td>
<td>100-200+</td>
<td>100,000</td>
</tr>
<tr>
<td>Large</td>
<td>1,000,000+</td>
<td>2000-4000</td>
<td>25+</td>
<td>300-500+</td>
<td>500-1000</td>
<td>500-1000+</td>
<td>10,000,000</td>
</tr>
</tbody>
</table>

*after Somme et al. (2009) and Blum et al. (2013)*
THE MCMURRAY CONUNDRUM

Western Canada Sedimentary Basin Stratigraphic Framework

Lower Mannville Group and McMurray Formation

Sub-Cretaceous Unconformity

from Benyon et al. (2016)
THE MCMURRAY CONUNDRUM

Types of Valleys – A Source-to-Sink View

**Sediment Production**
- relief
- climate
- bedrock valleys
- rock uplift

**Sediment Transfer**
- climate change
- storage and release
- mixed bedrock-alluvial valleys

**Deposition**
- climate change
- sea-level change
- backwater effects
- coastal-plain incised valleys
- cross-shelf incised valleys

**Export**
- fluvial connection to shelf margin to seafloor margin
- shelf margin to basin floor

after Blum et al. (2013)
THE MCMURRAY CONUNDRUM

Widely Published Model for McMurray Environments of Deposition

from Hein et al. (2013)
THE MCMURRAY CONUNDRUM

A Common McMurray Interpretation – Estuarine Point Bars

- estuary or tide-dominated delta distributary funnel
- upper estuary tide-dominated delta channels
- alluvial plain
- inshore tidal zone
- fluvial-tidal transition zone
- marine to fluvial transition zone
THE MCMURRAY CONUNDRUM

A “Contrarian View” – Amalgamated Fluvial Channel Belts

modified from Dalrymple (2015), originally from Mossup and Floch (1983)
THE MCMURRAY CONUNDRUM

McMurray Channel-Belt Deposits – Conflicting Empirical Realities

Devonian bedrock

Athabasca River

trace fossils that indicate “brackish” water

silt drapes that indicate “tidal” influence

from B. Varban

LIDAR Image, Louisiana

McMurray 3D Horizon Slice

2 km

2 km

45 m

45 m
The McMurray as a Giant Continental-Scale Fluvial System

after Blum and Pecha (2014) and unpublished
The McMurray as a Giant Continental-Scale Fluvial System

after Moreton and Carter (2015) and Blum unpublished
THE MCMURRAY CONUNDRUM

Normal Flow to Backwater Transition – Where Rivers Begin to Feel Sea Level

MIXED BEDROCK-ALLUVIAL VALLEY

- flood-plain long profile
- flood stage

COASTAL-PLAIN VALLEY

- possible tidal effects
- brackish limits
- salt wedge
- Backwater Effects

modified from Li et al. (2006)
THE McMURRAY CONUNDRUM

Backwater Length Scaling Relationships

after Blum et al. (2013)
Backwater Effects on Channel-Belt Morphology and Scales

after Hudson and Kesel (2000), Nittrouer et al. (2011), Blum et al. (2013)
THE McMURRAY CONUNDRUM

Downstream Transformations in a Macrotidal System

Irrawaddy River

Tidal Backwater Limit 300 km

Saltwater Limit 100 km

100 km

100 km
Seismic data are consistent with highly migratory point bars, and width:thickness ratios are consistent with a river in upper backwater reaches.
THE McMURRAY CONUNDRUM

McMurray Channel-Belt Deposits – Conflicting Empirical Realities

McMurray 3D Horizon Slice

LIDAR Image, Louisiana

trace fossils that indicate “brackish” water

silt drapes that indicate “tidal” influence

from B. Varban

Devonian bedrock

Athabasca River

45 m

2 km

2 km

from B. Varban
brackish trace fossils continuous through point-bar successions
THE MCMURRAY CONUNDRUM

Estuarine Salt-Water Penetration Concepts

after Geyer et al. (2015)
THE McMURRAY CONUNDRUM

Types of Valleys – A Source-to-Sink View

**Sediment Production**
- relief
- climate
- bedrock valleys

**Sediment Transfer**
- climate change
- storage and release
- mixed bedrock-alluvial valleys
- Fluvial Conveyor Belt

**Deposition**
- climate change
- sea-level change
- backwater effects
- coastal-plain incised valleys
- cross-shelf incised valleys

**Export**
- fluvial connection to shelf margin
- shelf margin to basin floor

after Blum et al. (2013)
Summary

• The McMurray is a giant river from detrital zircons and point-bar scales

• The McMurray conundrum:
  • large laterally-amalgamated point bars extend upstream to downstream through the Assiniboia paleovalley for over >400 km
  • trace fossils that indicate brackish conditions are ubiquitous, even up to the top of the point bars

• The McMurray is a fully fluvial, highly migratory river with possible tidal influence?

• The scale, distribution, and physical characteristics of the deposits are incompatible with brackish water influence associated with marine environments…….perhaps an outside-the-box explanation?