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Abstract 

Mud-dominant point bars are common features showing deposition by either tidal influence, bar tails, or counter point bars. Less understood 

are mud-dominant point bars that lack these depositional characteristics. These “muddy-normal” point bars are common in hydrocarbon 

reservoirs. Better understanding a muddy-normal point bar’s impact on reservoir quality and how they form will assist in establishing 

predictive relationships that will aid in production and exploration. Upper Cretaceous fluvial strata of the Dinosaur Park Formation in the 

Steveville badlands of Dinosaur Provincial Park, Alberta, are targeted to address this issue. The goal of this study was to determine processes 

by which normal-muddy point bars form from LIDAR renderings to develop a 3D model of the bar volume. Strikes and dips, paleocurrents, 

and stratigraphic columns were collected to determine accretion trajectories and lithologic trends. Surfaces were also mapped according to the 

rules of architectural-element analysis in 3D form. This point bar had altering layers of sand and mud, mud comprising over 50%. Mud layers 

within this point bar have current ripples, suggesting that the mud layers were deposited by active accretion events. This point bar also consists 

of accretion packages with differing orientations. The sand and mud packages are present throughout the point bar and do not appear to reflect 

location within the bar. These data suggest that the muddy deposits of the muddy-normal point bar reflect changes in trajectory of the bar and 

sudden and temporary adoption of accretion orientations not conducive to sand deposition, and do not record either late stages of growth in the 

overall bar formation process, deviations from fully fluvial drivers, or counter point bar patterns. 
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Mud-dominant point bars are common features showing deposition by either tidal influence, bar tails, or counter point bars. Less understood are mud-dominant point 
bars that lack these depositional characteristics. These "muddy-normal" point bars are common in hydrocarbon reservoirs. Better understanding a muddy-normal point 
bar's impact on reservoir quality and how they form will assist in establishing predictive relationships that will aid in production and exploration. Upper Creta.ceous fluvial 
strata of the Dinosaur Park Formation in the Steveville badlands of Dinosaur Provincial Park, Alberta, are t,u'geted to address this issue. The goal of this study was to 
determine processes by which normal-muddy point bars form from LIDAR renderings to develop a 3D model of the b,u" volume. StTikes and dips, paleocurrents, and 
stratigraphic columns were collected to determine accretion trajectories <md lithologic trends. Surfaces were also mapped according to the rules of architectural-element 
analysis in 3D form. This point bar had altering layers of sand ,md mud, mud comprising over 50%. Mud layers within this point bar have current ripples, suggesting that 
the mud layers were deposited by active accretion events. This point b<u" also consists of accretion packages with differing orientations. The s<U1d ,md mud packages <u"e 
present throughout the point b<u" <U1d do not appear to reflect location within the b<u". These data suggest that the muddy deposits of the muddy-normal point b<u" reflect 
changes in b"qjectory of the b<u" <U1d sudden ,md tempor<u"y adoption of accretion orientations not conducive to s<U1d deposition, <U1d do not record either late SI:.o1.ges of 
growth in the overall b,u" formation process, deviations from fully fluvial drivers, or counter point b<u" patterns. 
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This study examined the internal architecture 
o r a heteroli thic point b;u' deposit within the 
Cretaceous Belly River Group or Dinosaur 
Provincial P;u'k, Canada, more specifically 
the Steveville Area, that lacked evidence of 

~===========;;=~====================~ tidal or counter-poi nt-bar reatures. (Modified 
To betler lmderst,md this study, it is first import,mt rrom Smith 's reconstructed paleo"meander 
to have a basic underst,mding of heterolithic belt) 
properties. Heteroli thic properties are the result of 
inclined heteroli thic sb'atification (IHS) deposits ,md 
are typical in counter point bars and tidally influenced 
point bars. (Modified rrom Deutsch (201 3). 

A' 

T he heterolilhic point bar in this study dillers rrom typical heterolithic 
point bars because it was neither fo rmed, nor influenced by counter or tidal 
processes, yet it sh,u'es simil;u' features to a typical heterolithic point bar. This 
study's point bar has thicker mud deposits, like that of a counter point bar, and 
al ternating beds of sand and mud, as in IHS, but it is neither. (Modified rrom Smith 
et al. (2009)) 
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This study utilized the Dinosaur P,u'k Formation, p,ul of the 
Belly River Formation, due to excellent three-dimensional 
outcrops. '"rhese outcrops allowed for an extensive 

li thostratigraphic study of the archi tectu re or the point b,u', which 
aided in better understanding the fo rmation of this study's point 
bar. (Modified from Hamblin (I 997a)) 
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Here \\le see images from across ulis sl1.ldy's point bar. As seen fro m lhese images, Ule po int bar looks like a "normal" point bar, except for 
the fact that it is "bout 50% mud instead of predominantly sand. We know this "muddy-normal" bar was neither the result of 
tidal influences nor counter point bar processes, it is something entirely ncw. \ Ve do not see such things as mud clast breccias at the base, thick 
clay layers in the uppermost portion, or completely diminishing and fining of sand interbeds. T he goal of this study was to determine the 
process though which Illud-dominant po int bars (o rm. 
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Mud Sand Flood Plain

Channel Fill Lithification

Strike and dip data of major accretion surfaces taken from every photograph location. This 
table divides major accretion surface strikes and dips by stratigraphic section and then by 
surfaces within the section. 

Interpretations of the photographs taken from the field revealed four main
facie types -  mud (blue), sand (yellow), flood plain (green), and channel fill 
(dark purple-blue). Also identified, are  zones of lithification (red). 
Interpreted photographs also show locations of stratigraphic sections, major 
accretion surfaces, minor accretion surfaces, and strikes and dips of 
major accretion surfaces. Next to each interpreted photograph is its 
associated stratigraphic column - one detailed and nine “quick” stratigraphic
sections. The detailed and quick stratigraphic columns, as well as the 
photograph interpretations, revealed that mud does indeed comprise 50%
of this point bar and that this percentage of mud is across the entire bar.
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Stratigraphic 
Column Symbology

Mud beds within unit that display thin, low angled 
ripple laminations.

Well sorted lower medium sand, medium bedded with 

Sand beds that are comprised of  well sorted sand, 
typically medium bedded with thin to medium 
cross sets.

Sand beds that are comprised of well sorted sand, 
typically medium bedded with thin to medium 
parallel sets.

Mud beds that display thin to very thin cross 
laminations with laminations being cross laminated
to bedding.

Mud beds that are comprised of thin to very thin 
parallel laminations.

Sand beds that are comprised of cross sets with 
mud drapes on some of the cross sets.

Fine mudstone, poorly to very poorly preserved parallel
laminations, scattered coal fragments, strips that are 
presumably roots, thin hair sized iron staining.

Fine mudstone with a “peaty” topping, very poorly

scattered small coal fragments.

This detailed stratigraphic column of Section 7 shows the complete 
point bar - from flood plain deposit to flood plain deposit. The 
muddy-normal point bar is the lower portion of this column and 
directly above is the first two units of the overlying sandier point bar.
Seeing the sandier “normal” point bar directly above this stud s point
bar just reemphasizes the point that this stud s point bar is indeed 
different. It is muddy and the muddy deposits are not just mud drapes, 
but actual beds - we see sedimentary structures  such as ripples. 

A Faro Focus3Dx 130 (Faro) was used to collect spatial data points for a 3D model. This 
model was taken at the location of Section 1. The Faro provided photo-realistic 3D 
topographic data based on spatial data points. A total of 28 scans were collected at a ratio of 
½ and a quality of 4x. Data points collected through this process were given to Echo3D to 
generate a 3D model.

To answer this question of how a muddy-normal point bar forms, we began by going to 
the field to collect data. This study intended to determine the formation process of a 
muddy-normal point bar through a means of completing descriptions of point bar 
lithologies, utilizing photographs to depict important bar characteristics, analyzing strikes 
and dips of accretion surfaces, and generating a 3D model with a complete architectural
element analysis . Here are the locations from which data was retrieved. The image on the left 
shows the locations of all the photographs taken and the one on the right shows the location 
of all the stratigraphic sections. We completed detailed descriptions of point bar lithologies for 
locations 1, 2, and 7. For the other stratigraphic locations we took unit measurements, noted 
mud to sand ratios, and took measurements of the major accretion surfaces - no detailed 
lithologic descriptions were made.

We applied the process and principles laid out by Miall (1985, 1986, 1996) and Holbrook 
(2001) for an architectural element analysis of the photographs obtained from the field. This 
process will also be used on the 3D model, once it is complete.  A. Raw image of stratigraphic 
section 12. B. Image interpreted using architectural-element analysis. In this interpretation, a 
6th order surface is the highest order with a 3rd order being the lowest. (Modified from
Holbrook (2015))
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Conclusion

 This point bar was typically between 8 to 10 meters thick with altering layers of sand and mud, with mud being the predomina  sediment and comprising over 50% 
of the point bar. Flood plain deposits stratigraphically confined the point bar, allowing for the determination that it was a single complete point bar. Within the point 
bar, grain size had an upward fining trend for both the mud and sand layers. Typically, the mud layers are silty mudstones and the sand layers started as medium grained 
at the base of the point bar and then fined up to layers of lower fine sand at the top of the point bar. Mud layers and sand layers varied between thin  to medium bedded. 
Mud layers within this point bar are thick-bedded and have current ripples indicative of deposition by transport.  This suggests that the mud layers were deposited by 
active accretion events and are not simple drapes. This point bar also consists of accretion packages with differing orientations.  Accretion packages commonly  
between 3 to 4 meters thick and 10 to 15 meters long. Sand content shifts between packages, and alternating packages have sand contents more consistent with typical 
sandy point bars.  Both the sand-rich and mud-rich packages also contain surfaces with alternating orientations, but at a smaller scale.  The sand and mud packages are 
present throughout the point bar and do not appear to reflect location within the bar.  These data suggest that the muddy deposits of the muddy-normal point bar reflect 
changes in trajectory of the bar  and sudden and temporary adoption of accretion orientations are not conducive to sand deposition and do not record either late stages 
of growth in the overall bar formation process, deviations from fully fluvial drivers, or counter point bar patterns.
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Using the interpreted photographs and stratigraphic columns, we identified the 
percentage of mud and sand. For these tables, each section was divided into 
units and then each unit was further divided into mud and sand layers, as 
designated by the appropriate interpreted photograph. We also 
disinguished what layers were 50% mud and 50% sand (50/50) - as seen 
in red. These tables allowed us to quantifiably see how much mud is 
actually contained within this study’s point bar. Out of 152 layers, 60 are 
mud, 42 are sand, 46 are 50/50, and 4 were uncounted due to 
lithification. These tables further support that this is a muddy point bar. 
Also noted in these tables is the type of lapping relation of each unit - as 
divided by major accretion surfaces. We were looking to see if there was 
any pattern between lapping surface type and the type of sediment 
deposited. As can be seen from these tables, there was no notable 
correlation between the two.  
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Here we graphed mud percentages against units for each section - mud
percentage is on the y-axis and unit number is on the x-axis. We used
these graphs to see if there was a trend associated with the formation of 
muddy-normal point bars. From these graphs we determined that there 
was no trend.

We plotted strikes and dips of major accretion surfaces using Rick
Allmendinger’s Stereonet 9. We then transfered the stereographs
manually to Illustrator to distinguish surfaces  between mud (blue),
sand (yellow), and 50/50 (red). We were looking to see if there was
a correlation between orientation and what was deposited. Through 
this process we found a fairly strong correlation with orientation and 
sand deposits and a slight correlation with orientation and mud
deposits. In this stereonet we have not corrected for position in
the point bar, but are currently working on a new stereonet that will
account for position. We believe  that once position is accounted for
both mud and sand deposits will show a correlation with 
orientation.




