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Abstract

This work demonstrates the utility of in situ carbon and oxygen isotope microanalysis (§"°C and §'0) by secondary ion mass spectrometry
(SIMS) in carbon sequestration research. A desirable long-term consequence of CO,-injection into underground rock formations at prospective
storage sites (such as deep saline sandstone aquifers capped by impermeable strata) is the precipitation of carbonate mineral cements, the
isotopic fingerprinting of which is a central theme here. More specifically, we focus on the unique advantage of the SIMS technique, which lies
in the capability of analyzing very small sample volumes that are otherwise inaccessible to sampling techniques in conventional isotope ratio
mass spectrometry (IRMS). For example, single carbonate crystallites as small as 3-10 um across can be readily analyzed by SIMS with sub
per-mil accuracy and precision. Importantly, the ability to perform micrometer-scale measurements in situ from either thin sections or 1-inch
(25 mm) diameter polished core plugs preserves the petrographic context of measured carbonate 820 and §*3C values.

An important aspect of analytical methods-advancement is the continued development of reference materials that will allow for correcting
SIMS-specific sample matrix effects in a wider range of Ca-Mg-Fe-carbonate compositions. At present, routine analyses can be performed on
the end-members calcite (and aragonite), siderite and magnesite, as well as on the spectrum of compositions that fall along the dolomite-to-
ankerite solid solution series (Sliwinski, et al., 2016a, 2016b).

At the Illinois Basin Decatur Project (IBDP) demonstration site (Leetaru et al., 2009; Leetaru and Freiburg, 2014), it is estimated that at least
10-20% of the introduced CO, may be consumed, and thus permanently stored, via the precipitation of Ca-Mg-Fe-carbonates (e.g. Liu et al.,
2011; Carroll et al., 2013). We provide here a preliminary characterization of the pre-injection mineralogy and isotopic fingerprints (8**C and
§'®0) of carbonate cements in the Mt. Simon Sandstone reservoir and the overlying shaly caprock (the Eau Claire Formation). By drawing
upon published data on ambient reservoir conditions and the C-isotope composition of the injected CO,, we also make simple predictions about
the possible §"°C signatures of different carbonate cement types that may form in response to imposed CO storage.



Carbonate cements are generally abundant (although somewhat heterogeneously distributed) within the diverse suite of lithofacies that
comprise the Eau Claire (Neufelder et al., 2012; Sliwinski et al., 2016). Cement mineralogy is predominantly dolomite-ankerite, calcite and
subordinate siderite to Mg-siderite. Volumetrically significant occurrences also locally occupy the pore space of the upper Mt. Simon near
contact with the overlying caprock (Hoholick et al., 1984; Fishman, 1997; Bowen et al., 2011; Denny et al., 2015). Limited analyses indicate
that carbonate minerals (calcite, dolomite) are also present in mudstone/shale interbeds at depth in the general vicinity of the CO; injection
zone within the lower Mt. Simon (e.g. see Table 8.3 in Finley, 2005). These clay mineral-rich interbeds are considered to be the first reactive
environments that will be encountered by the emplaced CO, plume as it buoyantly rises through the reservoir, and are estimated to have the
same capacity for sequestrating carbon by mineral-trapping reactions as the basal Eau Claire shale (Finley, 2005). Characterization could
include isotopic fingerprinting studies of carbonates from these intervals in core material recovered from: (1) wells drilled at the IBDP site
prior to CO,-injection (2011-2014), and (2) future coring efforts during the now on-going, post-injection monitoring phase of the project.

Comparative studies of pre- and post-injection samples could aid in ground-truthing and/or refining reactive flow and transport models that
attempt to: (1) predict the rate of mineral-trapping reactions, (2) to delimit the likely spatial distribution of reaction products (carbonate
cements), and (3) to estimate the fraction of the CO, introduced into the reservoir/caprock system that will likely become permanently
immobilized in mineral form (Liu et al., 2011). Whereas the CO, injection zone is situated within the lower Mt. Simon Sandstone at the IBDP
site, injection was also planned into the upper portion of this reservoir unit at the nearby site of the FutureGen 2.0 project (now defunded; e.g.
Bonneville et al., 2013).

We identify some areas of current research interest where in situ isotope microanalysis by SIMS could provide unique insights to investigations
concerned with understanding how CO, will interact with geological reservoirs and caprocks under engineered storage conditions. It is likely
that studies of natural CO, accumulations - regarded as analogues to engineered CO, storage - could find the micrometer-scale spatial
resolution afforded by the SIMS technique particularly advantageous.

Research efforts directed at natural analogues seek to quantify the rate and extent of CO, trapping via precipitation of carbonate mineral
cements (i.e., ‘carbon mineralization' or 'mineral-trapping’), and by so doing to make quantitative predictions about the probable long-term fate
of CO; in a prospective reservoir. Stable carbon and oxygen isotope analyses are an important component of this line of research, as they
provide a means by which to distinguish different carbonate cement populations within the pore space of a reservoir or caprock unit (e.g. CO,-
charge-related cements vs. those that may have formed during earlier stages of sediment alteration). However, clear interpretations of
conventional isotopic data (sampling typically at the 100-1000 um? scale) will be hindered in situations where it is not possible to mechanically
or chemically separate (due to small crystal size) different carbonate cement generations. This, specifically, is where in situ analysis by the
SIMS technique has a unique advantage (routine in situ sampling at the 1-10 um scale).
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