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Abstract 

 

Eustasy is thought to be a critical control on the distribution of sediment in basin margins and is used in conceptual stratigraphic models to 

predict the location of sand-rich deposits and explain basin development. We used a nonlinear, diffusion-based numerical forward stratigraphic 

model in a synthetic basin to test the impact of the widely cited eustatic curves of Haq et al. (1987) and Kominz et al. (2008) on sand 

distribution. These eustatic curves are distinctly different on the million-year scale in amplitude and frequency. The eustatic record of Haq et al. 

(1987) has higher amplitude, low frequency fluctuations compared to the Kominz et al. (2008) record. We hypothesize these dissimilarities 

should result in different loci of sand deposition. The question is: How different? Overall, the Haq model was marginally more effective than 

the Kominz model at delivering sand to deep water, particularly on the slope and distal part of the basin directly in front of the sediment point 

source. The large, low frequency short-term eustatic falls of the Haq model resulted in broad deep-water sediment and sand accumulation 

events. The low amplitude, high frequency short-term eustatic falls of the Kominz model resulted in more punctuated deposition of sediment, 

with a larger volume of sand distributed across the outer shelf and upper slope. This experimental framework quantitatively demonstrates the 

impact of two well-known eustatic curves on large-scale deposition and allows for investigation of the processes that lead to the development 

of the stratigraphic record. 
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• The stratigraphic record is the result of complex 
upstream and downstream forcing dynamics: 
– One forcing (e.g., climate) can responsible for 

different responses across the entire sediment 
routing system 

– Variables are not independent 
– Positive and negative feedbacks 
– Nonlinear processes 

• Use careful geologic observations, numerical, and 
physical experiments to systematically investigate 
controls on the stratal record 

• Impact of sea level likely increases with proximity 
to coast within S2S system (Posamentier and
Allen, 1999; Sun et al., 2014; Armitage et al., 
2016)
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• Newberry (1874) thought sea level was the principal control on stratal architecture 
• Suess (1885) coined the term “eustasy”
• Chamberlin (1909) proposed a tectono-eustatic control on  transgressions and regression on continental 

margins 
• Wanless and Shepherd (1936) proposed glacio-eustatic cause for Paleozoic cyclothems 
• Sloss et al. (1949) and Sloss (1963) introduced “sequences”
• AAPG Memoir 26 (1977) - Eustatic control on stacking patterns 
• Posamentier and Allen (1999) - Relative Sea Level = Eustasy + Tectonism 

Slatt, R. M. (2006): Strat. Res. Char. for Petro. Geol., Geophys., and Eng.  
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• Mechanisms for sea-level change 
– Ridge Volume 
– Sedimentation 
– Thermal Expansion 
– Lakes
– Ice Sheets 

• Even during greenhouse times?! 
– Geodynamics 

• Mantle convection processes 

Miller et al. (2011): Oceanography 



© 2016 Chevron Corporation 

• Haq et al. (1987) 
– Seismic stratigraphy 
– Controversial (Christie-Blick et al., 1991; Miall, 1992) 
– High amplitude, low frequency 

• Kominz et al. (2008) 
– NJ margin based (ODP legs 150, 174AX) 
– Backstripped 
– Lower amplitude (2.5 times less than Haq curve), higher frequency  
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• What impact do the eustatic curves of Haq et al. (1987) and Kominz et al. (2008) have on: 
– Sand volume delivered to deep water? 
– Position of depocenters in the basin? 
– System response? 

Posamentier and Allen (1999): Con. in Sed. and Pal; (Vol. 7) 

Granjeon (2014):  Int. Assoc. Sedimentol. Spec. Publ., 46, 453-472.
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• Dionisos (IFP, Granjeon, 1997) 

• Nonlinear Diffusion: 
Qs = -(Ks + KwQ~sm-l) vh 

• Will not model individual geologic features 

• Large-scale autogenic processes: 

-Avulsion 

- Autoretreat 

- Channel incision 

- Slope failure 

• 65-10 Ma 

• Constant Water and Sed. Discharge 

- Ow = 10,000 m3jsec 

- Os = .32 m3jsec 

• Subsidence, compaction , and flexure 
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• Peaks in deep-water sand delivery correlate well with eustatic minima 

Model Results 
Kominz Model 
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• Sand thickness difference map = Haq model - Kominz model  
• Red indicates Haq model sand thickness is greater than Kominz model 
• Kominz model deposited a thicker accumulation of sand on the outer shelf-upper slope; Haq model 

deposited more in deeper sections of the basin 
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• Poor correlation between rate of relative sea-level 
change and magnitude of deep-water sand 
delivery 

• Calculated rates did not account for flexure and 
compaction 

• RSL is a 1-D measurement 
• Self-regulated equilibrium regression (Burgess et 

al., 2008) 
– Large and small perturbations to a deltaic 

system will likely lead to similar responses after 
a delta has established a position at the shelf 
edge
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• The Haq model was slightly more effective than the Kominz model at delivering sand to deep water 
• The Haq model focused sand in proximal positions on the shelf and in the more distal parts of the basin  
• The Kominz model distributed a thick accumulation of sand on the outer shelf and upper slope 
• Each peak in deep-water sand delivery rate corresponds to a fall in sea-level 
• The magnitude of peaks in delivery rate correlates poorly with rate of relative sea-level change 
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