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Abstract

This paper explores the relationship between facies and provenance in large river systems and posits that in major drainage reorganizations, the
water from the newly formed catchment (as reflected in depositional facies) can pre-date delivery of sand-grade material (reservoir sands
transported as bedload) by periods of 1-10 Ma, potentially causing a major change in reservoir properties without a facies change. The main
part of this work is derived from fieldwork on the Pliocene palaeo-delta of the Colorado River, which was deposited in the Fish Creek-
Vallecito Basin of southern California. The delta deposits are well-exposed in the badlands of Anza-Borrego Desert State Park and record a
complete delta cycle from pro-delta turbidites to delta plain deposits. There is a well-studied contrast between sands derived from the Colorado
River (C-Suite) and locally derived sands (L Suite). The locally derived sands are lithic, while the C-Suite sands are quartzose; the two suites
can also be distinguished on heavy mineral population and varietal mineral geochemistry. L-Suite sands underlie, are laterally equivalent to,
and overlie C-suite Colorado deposits, recording initiation, deposition, and eventual abandonment of this first Colorado delta. The lower
provenance change is transitional and takes place within the Pliocene Wind Caves member of the Latrania Formation. This change has been
dated as younger than 5.33 Ma and used to support the lake-spillover hypothesis for initiation of the lower Colorado River and formation of the
Grand Canyon. However, the main facies change is between locally derived subaerial conglomerates of the Split Mountain Group and well-
sorted marine turbidites of the Lycium Member of the Latrania Formation; this change is well dated at 6.24 Ma (Messinian, Miocene). Since
the depositional facies of the 100 m thick Lycium Member are consistent with those of the 200 m thick Wind Caves Member, we infer that
Colorado water (representing the connected drainage) arrived in southern California about one million years before arrival of the bedload (C-
Suite) sands. We will consider other examples of this phenomenon from Sakhalin (Neogene Amur River delta) and Antarctica (Permo-Triassic
fluvial deposits) and draw general lessons for the effects of provenance change on hydrocarbon reservoirs that will not be apparent from facies
analysis or petrophysics alone.
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The “academic” approach
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Why care about provenance? The commercial imperative
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The ancestral Colorado River
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The ancestral Colorado River
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The ancestral Colorado River
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The ancestral Colorado River
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The ancestral Colorado River — death of the delta
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The ancestral Colorado River — some conclusions
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The ancestral Colorado River — some conclusions
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Deriving rates

of bedload movement
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Deriving rates of bedload movement:
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Deriving rates of bedload movement:

Pacific to Atlantic

A1 1 A2 | B | c | D1 | D2 »1 E | F |
Vicloria epl-crelonic sub-basin ROS5 HIGH Transantarctic lareland basin lald-thrust belt magrnatic arc  foneang §
(FORESWELL) aceratianary
P J TR ot “ complax
- -ttty o me—mm———s - & | LK *
._‘_x"._;..;a.xa.ka-:l.-.-!n-l:a.t,;_._! P | ] -0
D Py granitic and melamarphic basemant = oAl W"
™ J L J B
\Pr S Lo P s
auter mangin of Aoss aragen - .-: - | | Il\”f‘a"f_-
T T T . T { k % 2
400 500 GO0 700 OO Mm
Ross Sea Beardmore  Queen Maud Ohig Pensacola Elisworth Thurston  Antarctic
Glacier Mauntains Range Mountains Mountains Island FPeninsula

LT T

::' ':] 14 9 5

s
Mean rate of bedload migration: 18.6 km/Ma +13.8/-9.4 cgr;ill’;/EErf\Dl!:-ll;KJ



Conclusions

1. Water from a changed catchment arrives before bedload
2. Water determines the sedimentology
3. Rates of bedload movement average to km/Ma

4. Colorado connection to ocean may be older than thought
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~ Sculpture Park, Anza Borrego Desert State Park





