Micrite, Microporosity and Total Organic Carbon Content: Depositional and Diagenetic Controls Linking Small- and Large-Scale Observations in the Tuwaiq Mountain and Hanifa Formations*

Mustafa A. Al Ibrahim¹,³, Rick Sarg¹, Neil Hurley², Dave Cantrell³, and John D. Humphrey²

Search and Discovery Article #51229 (2016)**
Posted March 7, 2016

*Adapted from poster presentation given at AAPG 2015 Annual Convention and Exhibition, Denver, Colorado, May 31 – June 3, 2015
**Datapages © 2016 Serial rights given by author. For all other rights contact author directly.

¹Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado, United States (Mustafa.Geoscientist@outlook.com)
²Earth Sciences Department, Chevron Energy Technology Company, Houston, Texas, United States
³EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Eastern Province, Saudi Arabia

Abstract

Micrite texture, porosity development, and total organic carbon (TOC) content are interrelated in carbonate mudrocks, and have been examined in this study, within a sequence stratigraphic framework in the Tuwaiq Mountain and Hanifa formations, Saudi Arabia. Tools used are nuclear magnetic resonance logs, scanning electron microscopy, and confocal microscopy. Nuclear magnetic resonance is suitable for defining pore-size distributions. Confocal microscopy is most suitable for quantifying and examining microporosity, micrite texture, and examining larger-scale heterogeneity (centimeter- to 10s of centimeters-scale). Detection of organic matter is possible, but organic pores are beneath the resolution of the tool. Scanning electron microscopy (SEM) is most suitable for studying micrite texture and organic porosity. Results show that carbonate composition is the dominant control on micrite texture. High-magnesium calcite and aragonite grains recrystallize into low magnesium calcite, which leads to fusing of micrite grains, and porosity reduction. Organic matter, if present, inhibits fusing. The Tuwaiq Mountain Formation wackestones are composed of coalesced micrite whereas the packstones are composed of cemented micritized shelf-derived grains. Both facies contain euhedral pyrite. The Hanifa Formation contains both tight and relatively porous micrite particles. The highest TOC values were recorded in the transgressive system tracts which are mainly composed of dark laminated mudstones. Framboidal pyrite is commonly associated with organic matter. Porosity types found are interparticle, intraparticle in pyrite, organic pores and fractures. SEM images show that coccoliths are the most prominent grain type in the darker-colored intervals of the Hanifa Formation. These darker-colored intervals are more pervasive in the transgressive systems tracts. Coccoliths can bind with fecal pellets to increases settling velocity, thereby helping to preserve organic matter. Lighter-colored intervals, which are dominant in highstand systems tracts, are composed of more euhedral, relatively fused micrite grains. These grains probably formed due to recrystallization of metastable carbonate grains that were deposited as gravity flows derived from the shelf. The sequence stratigraphic framework has provided a framework for micrite texture, porosity, and TOC content prediction.
MIRITE, MICROPOROSITY, AND TOTAL ORGANIC CARBON CONTENT: DEPOSITIONAL AND DIAGENETIC CONTROLS LINKING SMALL- AND LARGE-SCALE OBSERVATIONS IN THE TUWAIQ MOUNTAIN AND HANIFA FORMATIONS

Mustafa A. Al Ibrahim1,3, Rick Sargi1, Neil F. Hurley2, Dave Cantrell3, and John Humphrey2

1. Colorado School of Mines
2. Chevron Technology Company
3. Saudi Aramco

1. ABSTRACT

Mircite texture, porosity development, and total organic carbon (TOC) content are interrelated in carbonate mudrocks. These aspects have been examined in this study, in a sequence stratigraphic framework in the Tuwaq Mountain and Hanifa Formations, Saudi Arabia. Tools used are nuclear magnetic resonance (NMR), scanning electron microscopy, and confocal microscopy. Nuclear magnetic resonance is suitable for defining pore-size distributions. Confocal microscopy is most suitable for quantifying and examining microporosity, micrite texture, and examining larger-scale heterogeneity (centimeter to 10s of centimeterscale). Detection of organic matter is possible, but organic pores are beneath the resolution of the tool. Scanning electron microscopy (SEM) is most suitable for studying micrite texture and organic pore. Results show that carbonate composition is the dominant control on micrite texture. Highmagnesium calcite and aragonite grains recrystallize into low magnesium calcite, which leads to fusing of micrite grains, and porosity reduction. Organic matter, if present, inhibits fusing. The Tuwaq Mountain Formation wackestones are composed of coalesced micrite whereas the packstones are composed of cemented micritized shell-derived grains. Both facies contain ooidoidal pyrite. The Hanifa Formation contains both tight and relatively porous micrite particles. The highest TOC values were recorded in the transgressive systems tracts which are mainly composed of dark laminated mudstones. Framboidal pyrite is commonly associated with organic matter. Porosity types include intraparticle, interparticle, and pyrite, organic pores and fractures. SEM images show that coalscists are the most prominent grain type in the dark-colored intervals of the Hanifa Formation. These dark-colored intervals are more pervasive in the transgressive systems tracts. Coalscists can bind with faciesperiods to increase sedimentary depth, helping to preserve organic matter. Lighter-colored intervals, which are dominant in highstand systems tracts, are composed of more equant- to irregular-shaped micrite grains. These grains probably formed due to recrystallization of metastable carbonate grains that were deposited in the gravity flows derived from the shelf. The sequence stratigraphic framework has provided a framework for micrite texture, porosity, and TOC content prediction.

2. STUDY OBJECTIVES

The study aims to link observed small-scale heterogeneity to largescale depositional and diagenetic controls in carbonate mudrocks. This is done by correlating high resolution images to geologic interpretations obtained from other data sources.

3. BACKGROUND AND DESCRIPTION

Micrite texture can vary in carbonate mudrocks. Different textures have different poreformationpotential. Scanning electron microscopes (SEM) can reveal intricate details about rocks in the nano scale. However, it is has very limited areal coverage. It is used in this study to examine micrite textural variations and pore types. Confocal scanning laser microscopy measures the excitation of a material to a certain wavelength. It is used to study organic matter and pore distribution in the sample. Imaging area can cover few millimeters to centimeters. Nuclear magnetic resonance measures the precession of protons to an induced magnetic field. Measurements from logs and lab experiments have been used to estimate porosity and pore-size distributions.

4. GEOLOGIC SETTING AND DESCRIPTION

The Callovian Tuwaq Mountain and the Oxfordian Hanifa Formations are deposited in a marine carbonate shelf.

These formations are considered the main source for the Mesozoic petroleum/hydrocarbon system in Arabia. The studied interval (red circle) is located in one of the deepest intra-shelf basin in the area. Five general facies have been identified in the interval (see Section 5). The interval in the study area are interpreted to be deposited in a relatively deep environment in an intra-shelf basin. Independent sources of information and analysis point to a consistent interpretation, increasing the confidence in the conclusion.

A sequence stratigraphic framework was defined for the Hanifa and Tuwaq Mountain formations based on core and thin section descriptions, well logs, and geochemical data.
5. FACIES ANALYSIS

1. WISPY LAMINATED WACKESTONE TO MUDSTONE
 - Gray to dark gray fine to very fine wackestones and mudstones (mostly packstone). Calcite filled fractures are commonly sub-horizontal and rarely bifurcate. Bioturbation is moderate and burrows are horizontal and mud-filled with about 0.5 to 1 cm diameter. Chondrites are present in muddier intervals.

2. CEMENTED PACKSTONES AND GRAINSTONES
 - Gray to light gray cemented fine to coarse packstones and grainstones. Grains are composed of forams, bivalve shells, and other unidentified clasts. Bioturbation is more abundant in the mudstone sections. Visible porosity in some intervals is generally moldic and inter-granular. Wispy organic laminations grading to stromatolites are present.

3. LAMINATED DARK AND LIGHT MUDSTONE
 - Laminated rhythmical dark brown, dark gray and light brown mudstones and wackestones (muddy packstones). Lighter intervals have more sparry calcite and darker intervals have more organic matter and mud. Clasts include forams, thin shelled bivalves, and peloids. Fractures are calcite filled.

4. BIOTURBATED DARK BROWN PACKSTONE
 - Gray to brown grany, faintly laminated packstone to wackestone. Moderate to high bioturbation is present.

5. PALMATE ANHYDRITE
 - White to light gray anhydrite. Palmate structures with varying length are clearly present. Anhydrite intervals and crystals are separated by carbonate.

6. HIGH-RESOLUTION IMAGING OF LITHOFACIES

Facies 1 consists of wispy laminated wackestones and mudstones. NMR logs show little porosity. Images show more prominent porosity in the burrows. Rare rhombohedral dolomite crystals are scattered and some are broken. Porosity is mostly interparticle between the micrite grains. The less disturbed intervals, which constitute most of the facies, are more homogeneous. Micrite particles commonly flocculate and porosity is between these clumps. Pyrite is euhedral and is more dominant in burrows.

Facies 2 is composed of packstones to grainstones. The NMR log shows very little porosity, comparable to facies Most of the grains are micritized completely, whereas others have moidal porosity that is occluded with cement. The rock contains two distinct phases of calcite cement: (1) isopachous cement coats grains, and (2) equant cement fills the pores. The isopachous cement is subhedral, varying in size, and not ordered. Grains are micritized partially or completely in this facies. Pyrite crystals are euhedral and concentrated in fossil edges.

Facies 4 consists of bioturbated packstones to wackestones. NMR data shows relatively larger pores. This is also confirmed by confocal images. SEM and FE-SEM images show subhedral to euhedral micrite grains with varying size. They are generally bigger than micrite particles in other facies. The facies is less compacted than Facies 5, with more organic-rich intervals being the least compacted. The micrite can be classified as porous and surrounded. Interparticle space is filled with organic matter or empty.

Facies 5 is palamate anhydrite. Anhydrite is intercalated with carbonates. Confocal images shows that crystal boundaries are the most porous areas in the facies. NMR total porosity in this facies, however, is less than 1 percent. Crystals range in size from a couple to tens of microns, with the majority being less than 10 microns in maximum length. Carbonate rich areas contain some organic matter.
7. VARIATIONS IN LAMINATED CARBONATE MUDROCKS

Whereas secondary images show very compacted texture, backscatter images show variations in density. Some of the larger grains are actually composed of smaller micrite particles. The particles can range in size from less than one micron to tens of microns.

Micrite texture is variable in facies 3. Darker-colored intervals have higher organic content and abundant coccoliths and are interpreted, from elemental analysis, to be due to higher productivity and anoxic conditions. Micrite fragments are euhedral. This facies can be classified as a porous subordinated micrite. Organic content is high in these rocks. Micrite particles are generally distinct. Relatively lighter-colored intervals still contain organic matter. Lighter-colored intervals contain more subhedral to euhedral micrite crystals with fewer coccolith platelets. Micrites are generally fused together. This is classified as light subhedral to anhedral micrite. Micrite texture is variable in facies 3. Darker-colored intervals have higher organic content and abundant coccoliths and are interpreted, from elemental analysis, to be due to higher productivity and anoxic conditions. Micrite fragments are euhedral. This facies can be classified as a porous subordinated micrite. Organic content is high in these rocks. Micrite particles are generally distinct. Relatively lighter-colored intervals still contain organic matter. Lighter-colored intervals contain more subhedral to euhedral micrite crystals with fewer coccolith platelets. Micrites are generally fused together. This is classified as light subhedral to anhedral micrite.

8. SUMMARY OF OBSERVATIONS

- A conceptual model is proposed to explain the variations in rock properties including total organic content. The model is related to sequence stratigraphic changes.
- Anoxic to suboxic conditions and relatively high productivity is preserved for the preservation of organic content.
- Nuclear magnetic resonance, scanning electron microscopy, and confocal microscopy are useful for studying the small scale heterogeneity in mudrocks.
- Integration of data at different scales is essential for understanding mudrock systems.

9. PROPOSED DEPOSITIONAL MODEL

Sediment source composition has a major effect on the ultimate micrite texture. Initial porosity is commonly occluded due to cementation or recrystallization. In carbonate mudrocks, aragonite and high-magnesium calcite particles will ultimately recrystallize to low-magnesium calcite, which leads to the creation of tight micrite texture. Porous micrite can be produced by inhibition of nucleation and recrystallization which can be done by coating crystals with organic matter. Transgressive systems tracts have higher potential for the preservation of organic matter. They contain a relatively higher proportion of coccoliths, presumably due to infux of nutrients, temperature modulation, or detrital influx suppression. Coccolith over-population could create local subsidence to anoxic conditions.

Organic matter in these intervals might be preserved due to high settling velocity when bound with coccoliths. This leads to the preservation of organic matter due to high sedimentation rates. Finally, thermal maturity probably controls the amount of organic porosity in the interval.

10. CONCLUSIONS

- A conceptual model is proposed to explain the variations in rock properties including total organic content. The model is related to sequence stratigraphic changes.
- Anoxic to suboxic conditions and relatively high productivity is preserved for the preservation of organic content.
- Nuclear magnetic resonance, scanning electron microscopy, and confocal microscopy are useful for studying the small scale heterogeneity in mudrocks.
- Integration of data at different scales is essential for understanding mudrock systems.

11. REFERENCES

[References listed here]

12. ACKNOWLEDGMENTS

We would like to thank Saudi Aramco for giving permission to publish the data and Schlumberger for supporting this study. We also want to thank John Humphrey (Colorado School of Mines) and Dave Cantrell (Aramco) for their valuable input. Software used in this study: Golden Strater, Mathwork Matlab, Schlumberger Techlog, and Fiji (image).