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Abstract

Deep-sea sedimentary environments represent the ultimate frontier for hydrocarbons exploration, as they are associated to many technical and
scientific challenges. Even if the understanding of such environments has substantially increased during the last decades supported by advances
in seismic imaging techniques and deep-sea drilling, reproducing the dynamic evolution of these systems is still a major challenge. The use of
innovative diffusion-based forward stratigraphic modelling approaches allows the reproduction of deep-sea sedimentary systems evolution
under dynamic subsidence and uplift conditions. The modelling principles mimic the transport and sedimentation of sedimentary packages
through time, steps of tens of thousands of years or more, along a continuously evolving basin-surface of hundreds of square kilometers. These
sedimentary packages are transported along the system by diffusion following dynamic waterflow pathways and gravity driven creeping. Two
sediment sources were used in the model: (1) a mix between lithic fine-grained sands as well as shale particles, and (2) a mix between fine-
grained quartz-rich sand particles and shales.

Vertical uplift and subsidence were set as a proxy for syn-sedimentary salt kinetics, which directly impact the basin geometry. A full 4D-grid
resulted from the forward stratigraphic model showing the distribution of sandstone and shale packages through time. As two mineralogically
different sources have been included in the model (lithic versus quarzitic sand), it was possible to determine the preferential sediment transport
route and distal accumulation related to these sources. Such results provide valuable information on the impact of the primary source
composition on the reservoir quality prediction previous to any diagenetic overprint. Lithology content in cells was consequently combined
with calculated environmental parameters in order to generate a sedimentary facies grid evidencing the distribution of amalgamated channel
infill, overbank, stacked lobes and shales. Alternative scenarios underlining the non-uniqueness of geological models were also generated by
multi-realization loops permitting consideration of the spectrum of variability linked to autocyclic processes (i.e. channel avulsions). The
Forward stratigraphic modelling approach constitutes a powerful tool for predicting facies distribution in deep-sea sedimentary systems and
thus a valuable contribution for reducing risks in exploration targets.
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g Submarine Fan’s Distribution
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g Sedimentary Processes in Deep Settings
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& Detailed Geometries

Source

CHARACTER OF CHANNEL STACKING
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g Timing & Hierarchy
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g DionisosFlow — A FSM Tool

DionisosFlow is a deterministic process based tool that reproduces sedimentary
transport and deposition of siliciclastic and carbonates. subsidence, multiple grain
sizes, eustasy, Climatic cycles, in situ production or carbonates and erosion.

Diffusive Orientated Normal and Inverse Simulation of Sedimentation
(by IFP -- Granjeon, 1997; Granjeon and Joseph, 1999).
Initial
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g Transport Processes — Diffusive Equation

Transport is simulated through diffusive equations

Q,=KQ,s

— Qs =Sediment Load
— Qw= Water Discharge
— S = Depositional Slope

— K = Diffusive Coefficient L f

Drivers
e Slope
e Sediment Load
e Water discharge
e Gravity

Particles move through the system transported by
water and gravity at a velocity constrained by its
diffusion coefficient
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¥ Model Building (1/2)
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| Specifications:
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¥ Model Building (2/2)

Long-term flow + short term events (climatic cycles)

Salt deformation and its impact on sedimentation was simulated

Model base evolution from 35 to 30Ma — VEx10
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g Overall Facies Model

Climatic Variations on Supply +/- 50%

Sediment Supply
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& Overall Facies Model & Geometries
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& Channel Stacking Patterns

Channel Complex Set

Example from 35-32,6 Ma VEx50
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& Channel & Lobe Architecture
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& 'mpact of Salt Deformation
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& 'mpact of Salt Deformation

Facies
HoA00 m
19900 2000
] 18000 o0
Time step of 50kyrs
15000
12000
S000
19000
Coarse Sand G000
2233388
3000
2539548
Medium Sand
23210
2210
Fine Sand 2380
2380 i
o 2440
Medium Sand_Qz ==
1Q£§488.033 m
2450
18000
Z 2423032 m
Shale 15000
X100 m
Snno 12000
G000
S000
000
12000 Bhon

VEx50

18 AAPG ICE Conference, Cancun, September 2016

@Beicip-Franlab



g Thickness & NTG Maps (1/2)
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Pre-Salt (35 to 34Ma): {medium + coarse sand}
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g Thickness & NTG Maps (2/2)
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Post-Salt (34 to 32Ma): {medium + coarse sand}
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‘ Automated Multi-Realization

£ CougarFlow coupling allows:

® Generating of alternative scenarios by varying
some input parameters according to an
Experimental Design.

® To asses the impact of main influential
parameters on thickness and texture calibration.

® Sensitivity Analysis

=» It allows the analysis of uncertainties on input
parameters and their influence on simulation
results

DionisosFlow

xl‘
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g Uncertainties & Experimental Design

3 uncertain parameters
e Fluvial discharge through time (+/- 20%)
e Sediment supply for both sources (+/- 20%)
® Proportion of gz sand in both sources from 33Ma (+/- 20%)

Total of 11 simulations to cover the entire uncertain domain
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& Sensitivity Maps

Example for the pre-salt deformation sequence:
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g Conclusions

24

Deformation history and sediment supply are the main
controls on the sand facies distribution in deep-sea
environments.

Well defined laterally constrained channel complexes are
related to periods of decreasing sediment load (ie.
Transgressive?)

High sediment load periods lead to sand rich and laterally
extended channel and lobes complexes (ie. Lowstand —

highstand?)

Multi-realizations generated using ranges of values for the
input parameters allow to have alternative models to test
sensitivity and reducing uncertainties on results.
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