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Abstract 

Electrofacies classification for rock typing in complex carbonate reservoirs is very challenging due to high degrees of heterogeneity in 

lithology, mineralogy, and pore structure. In extreme cases, multivariate pattern recognition and classification methods such as discriminant 

function analysis, principal component analysis, and cluster analysis using conventional well logs are insufficient for electrofacies 

classification, particularly in carbonate reservoirs with “low dynamic” log curves. This study investigates how heterogeneity of petrophysical 

properties can improve electrofacies classification for rock typing in carbonate reservoirs. It utilizes statistical measures of heterogeneity, 

Lorentz Coefficient, to quantify variability in petrophysical properties. Within this investigation, the Heterogeneity Logs based on wireline-log 

data including the gamma-ray, density, neutron, sonic, and photoelectric-factor log suite are calculated over set intervals of 10 m, 5 m, 3 m, and 

2 m (33 ft, 17 ft, 10 ft, 7 ft) through Mississippian limestones of the Mid-continent. The investigation of Heterogeneity Logs shows a 

relationship between Heterogeneity Logs with geological features; for example, the lithofacies 6, the thick-bedded peloidal packstone-

grainstone, shows relatively increasing Heterogeneity Log NPHI values. This relationship leads to consideration of using Heterogeneity Logs 

for fluid-flow zone characterization. The Heterogeneity Logs and other predictor variables from well-log data are selected and linked to core 

lithofacies to train Artificial-neural-network (ANN), Self-organizing-map (SOM), and Multi-resolution Graph-based Clustering (MRGC) 

models for predicting lithofacies in wells without core. Finally, the results are compared with the widely used ANN clustering technique which 

utilizes only the five predictor variables logs including gamma ray, deep resistivity, photoelectric effect, difference between neutron porosity 

and density porosity, and average of neutron porosity and density porosity. 

References Cited 

Birch, C.B., 2015, Reservoir-scale stratigraphy, sedimentology, and porosity characteristics of Mississippian reservoirs, northeastern Anadarko 

Shelf, Oklahoma: Master’s thesis, University of Oklahoma, Norman, Oklahoma. 81 p. 

Campbell, J.A., C.J. Mankin, A.B. Schwarzkopf, and J.J. Raymer, 1988, Habitat of petroleum in Permian rocks of the midcontinent region: in, 

Permian Rocks of the Midcontinent, W.A. Morgan and J.A. Babcock, eds.: Midcontinent Society of Economic Paleontologists and 

mailto:fnu.suriamin-1@ou.edu


 

Mineralogists, Special Publication No. 1, p. 13-35. 

 

Dutton, S.P., 1984, Fan-Delta Granite Wash of the Texas Panhandle: Oklahoma City Geological Society, vol. Short Course Notes, p. 1-44. 

Fitch, P., S. Davies, M. Lovell, T. Pritchard, and C. Sirju, 2010, Heterogeneity In Carbonate Petrophysical Properties: Application to Fluid 

Flow Units And Sampling Strategies: SPWLA 51st Annual Logging Symposium, Perth, Australia, Society of Petrophysicists and Well-Log 

Analysts. 

 

Johnson, K.S. and K.V. Luza, 2008, Earth sciences and mineral resources of Oklahoma: Educational Publication 9, Oklahoma Geological 

Survey, 22 p. 

 

LoCricchio, E., 2012, Wash Play Overview, Anadarko Basin: Stratigraphic Framework and Controls on Pennsylvanian Granite Wash 

Production, Anadarko Basin, Texas and Oklahoma: AAPG Search and Discovery Article, no. 110163, web accessed September 25, 2016, 

http://www.searchanddiscovery.com/documents/2012/110163locricchio/ndx_locricchio.pdf. 

 

McConnell, D.A., 1989, Determination of Offset across the Northern Margin of the Wichita Uplift, Southwest Oklahoma: Geological Society 

of America Bulletin, v. 101, p. 1317-1332. 

 

Mazzullo, S.J., 2011, Mississippian oil reservoirs in the southern midcontinent: New exploration concepts for a mature reservoir objective: 

Search and Discovery Article 10373, web accessed September 25, 2016, 

http://www.searchanddiscovery.com/pdfz/documents/2011/10373mazzullo/ndx_mazzullo.pdf.html. 

 

Nissen, S.E., K.J. Marfurt, and T.R. Carr, 2004, Identifying subtle fracture trends in the Mississippian saline aquifer unit using new 3-D 

seismic attributes: Kansas Geological Survey Open File Report, no. 56. 

 

Northcutt, R.A. and J.A. Campbell, 1995, Geologic provinces of Oklahoma: Oklahoma Geological Survey Open-File Report 5-95, 1 sheet, 

scale 1:750,000, 6-page explanation and bibliography. 

http://www.searchanddiscovery.com/documents/2012/110163locricchio/ndx_locricchio.pdf
http://www.searchanddiscovery.com/pdfz/documents/2011/10373mazzullo/ndx_mazzullo.pdf.html


3. Study Area and Geological Background 4. Data

ConocoPhillips School of Geology and Geophysics, University of Oklahoma, Norman, Oklahoma

Fnu Suriamin and Matthew J. Pranter

Investigation of Petrophysical-Property Heterogeneity for Electrofacies 
Classification in Carbonate Reservoirs RCMLRCML

Reservoir Characterization and
Modeling Laboratory

The University of Oklahoma

The heterogeneity of the Mid-continent Mississippian Limestone makes it 
challenging to predict lithofacies and correlate between wells using wireline 
logs. Basic 1D, 2D, and multidimensional statistical data analyses were 
conducted for the available well-log curves in the cored well and the results 
were plotted to evaluate the input variables for clustering methods. 

This research also applies a statistical method, Lorenz Coeeficient, to measure 
heterogeneity of petrophysical properties.  To calculate the Lorenz Coefficient, 
the cumulative value of a property (for an example neutron porosity) is sorted 
from low to high values and plotted against cumulative measured depth. 
The Lorenz Coefficient is defined as twice the area between the linear line of 
equality and the Lorenz curve (Figure 6).  This process is repeated for the 
consecutive 10 m, 5 m, 3 m, and 2 m (33 ft, 17 ft, 10 ft, and 7 ft) data intervals 
to create the Heterogeneity Log for neutron porosity.

The heterogeneity logs (Figure 7) are investigated to determine their use to 
characterize variability in terms of grains, pore types, and the presence or 
absence of any dominant sedimentological features including fractures, 
sedimentary structures, nodules, diagenesis, and mineral compositions.  

The Heterogeneity Log will also be integrated as input variables for chosen 
clustering methods to evaluate their use in lithofacies prediction in un-cored 
wells.    

Figure 8. The workflow is designed to predict lithofacies or rock types in un-cored wells. Statistical data analysis and feature selection are conducted initially to 
select input variables. Heterogeneity Logs are integrated with selected variables or well-log curves to train clustering models for predicting lithofacies in 
un-cored wells. Artificial-neural network v.1 is widely used in previous study. This method utilizes gamma ray, deep resistivity, photoelectric effect , difference 
between neutron porosity and density porosity, and average of neutron porosity and density porosity. Artificial-neural network v.2 will integrate selected 
curves and Heterogeneity Logs into the model. Other clustering models such as Self-organizing-map (SOM) and Multi-resolution Graph-based Clustering 
(MRGC) methods will also be tested to find a more accurate electrofacies clustering.

Figure 7. An example shows 10 m, 5 
m, 3 m, and 2 m (33 ft, 17 ft, 10 ft, and 
7 ft) intervals for Lorenz Coefficient 
Heterogeneity Logs (red curves) 
plotted with the original 
neutron-porosity curve (blue curves).

4650

4750

4850

4950

5050

5150

5250

5350

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700

Heterogeneity (Lc 10 m)

Neutron Porosity Heterogeneity (Lc 10m)

4650

4750

4850

4950

5050

5150

5250

5350

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700

Heterogeneity (Lc 5 m)

Neutron Porosity Heterogeneity (Lc 5m)

4650

4750

4850

4950

5050

5150

5250

5350

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700

Heterogeneity (Lc 3 m)

Neutron Porosity Heterogeneity (Lc 3 m)

4650

4750

4850

4950

5050

5150

5250

5350

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700

Heterogeneity (Lc 2 m)

Neutron Porosity Heterogeneity (Lc 2 m)

Figure 6. The procedure for 
calculating Lorenz 
Coefficient (Lc) in a 10-m 
(33-ft) interval. From left to 
right: (1) neutron porosity 
log, (2) Lorenz  plot of the 
neutron data (red curve), (3) 
Lorenz Coefficient (Lc) 
Heterogeneity Log block 
created for 10-m (33-ft)  
interval.  
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1. Abstract
Electrofacies classification for rock typing in complex carbonate reservoirs is very 
challenging due to high degrees of heterogeneity in lithology, mineralogy, and pore 
structure. In extreme cases, multivariate pattern recognition and classification methods 
such as discriminant function analysis, principal component analysis, and cluster analysis 
using conventional well logs are insufficient for electrofacies classification, particularly in 
carbonate reservoirs with “low dynamic” log curves. 

This study investigates how heterogeneity of petrophysical properties can improve 
electrofacies classification for rock typing in carbonate reservoirs. It utilizes statistical 
measures of heterogeneity, Lorentz Coefficient, to quantify variability in petrophysical 
properties. Within this investigation, the Heterogeneity Logs based on wireline-log data 
including the gamma-ray, density, neutron, sonic, and photoelectric-factor log suite are 
calculated over set intervals of 10 m, 5 m, 3 m, and 2 m (33 ft, 17 ft, 10 ft,  7 ft) through 
Mississippian limestones of the Mid-continent. 

The investigation of Heterogeneity Logs shows a relationship between Heterogeneity 
Logs with geological features; for example, the lithofacies 6, the thick-bedded peloidal 
packstone-grainstone, shows relatively increasing Heterogeneity Log NPHI values.  This 
relationship leads to consideration of using Heterogeneity Logs for fluid-flow zone 
characterization.  

The Heterogeneity Logs and other predictor variables from well-log data are selected and 
linked to core lithofacies to train Artificial-neural-network (ANN), Self-organizing-map 
(SOM), and Multi-resolution Graph-based Clustering (MRGC) models for predicting 
lithofacies in wells without core. Finally, the results are compared with the widely used 
ANN clustering technique which utilizes only the five predictor variables logs including 
gamma ray, deep resistivity, photoelectric effect , difference between neutron porosity 
and density porosity, and average of neutron porosity and density porosity.               

2. Objectives
The Mid-continent Mississippian Limestone is known to be highly heterogeneous and 
extremely challenging to characterize. In the past, rock typing in the Mississippian 
carbonate reservoirs often focussed in relating core lithofacies with well logs including 
gamma ray, deep resistivity, photoelectric effect, difference between neutron and density 
porosity, average of neutron and density porosity, and a stratigraphic interval indicator to 
train a neural-network model to predict lithofacies in un-cored wells. 

The Artificial-neural-network (ANN) method requires a large dataset and significant 
training time while the results would be often overfitted to the desired output. This study 
focuses on finding a novel and more accurate petrophysical rock-typing workflow for 
reservoir characterization. The objectives of this study are to: 1.  characterize the 
unconventional carbonate reservoir system at the core, well, and field scales; 2. 
numerically measure heterogeneity of petrophysical properties in the Mississippian 
Limestone in north-central Oklahoma; 3. investigate if measures of heterogeneity 
petrophysical properties can increase predictability of lithofacies in un-cored wells, 
reservoir compartmentalization, and fluid-flow zones. 

Figure 2. Generalized stratigraphic 
column showing an ideal Mississippian 
interval in north-central Oklahoma. 
Note that there are numerous 
unconformities of various orders of 
magnitude in the Mississippian rocks.  
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Figure 4. Subcrop map of northern Oklahoma and southern Kansas. Grant County 
is outlined in red. Erosion has removed significant portions of the Mississippian 
rocks, especially to the north. In an ideal stratigraphy section,  Kinderhookian, 
Meramecian, Osagean, and Chesterian units would all be present. In this study 
area, Kinderhookian, Meramecian and Osagean series are present.

Modified from Nissen et al., 2004
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Figure 3. Schematic cross section through northern Oklahoma from west to east. Note that Grant County lies 
directly west of the Nemaha Ridge, the major tectonic feature in the area. The Mississippian interval in Grant 
County is thinner to the east toward the Nemaha Ridge as the result of uplifting and erosion.

Figure 5. Grant County map showing well locations (data provided by Devon). The data set consists of 55 wells with raster 
data, and 13 with digital well-log data. Three of those wells are cored: Devon Energy 1-7 SWD Frieouf, Devon Energy 1-7 
SWD Downing, and Devon Energy 1-8 SWD Kirby. Devon Energy 1-7 SWD Frieouf, Devon Energy 1-7 SWD Downing, and 
Devon Energy 1-8 SWD Kirby are the key wells in this study. Core and lithofacies description of Devon Energy 1-7 SWD 
Downing and Devon Energy 1-8 SWD Kirby wells are available in Birch (2015).
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Figure.1. Regional base map showing the major tectonic and basinal features of Oklahoma and Kansas. 
The study area of Grant County is marked in red box. It lies on the southwest edge of the Anadarko 
Ramp that progrades to the south. The Nemaha Uplift is the tectonic feature with the largest imprint on 
the geology in study area. It is the most likely contributor to the subaerial exposure and unconformities 
seen in the Mississippian interval. 

Modified after Dutton, 1984; McConnel, 1989; Campbell et al., 1988; Northcutt and 
Campbell, 1995; Johnson and Luza, 2008; LoCriccho, 2012 
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3. Geologic Setting
The Mid-continent 
Mississippian Limestone in 
north-central Oklahoma is 
located in the Anadarko 
ramp, the shallow ramp 
portion of the Anadarko 
basin, and a foreland basin 
associated with the Ouachita 
Orogeny. 

In the study area, the 
Mississippian deposits show 
high- frequency 
transgressive-regressive 
cycles that result in a series of 
shallowing-upward cycles.

Previous studies suggest that 
there are three (3) diagenetic 
stages in the Mississippian 
Limestone: early silicification 
and dolomitization;  subaerial 
exposure diagenesis 
(brecciation, silica 
dissoluction, and fracturing); 
and hydrothermal alteration 
including dolomitization and 
pyritization. 

5. Methods and Workflow
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Devon Energy 1-7 SWD Frieouf

Figure 9. Core description of well Devon Energy 1-7 SWD Frieouf, one of the key cores that is 
located in the northernmost of the study area. Seven (7) lithofacies classes are observed based 
on detailed core description in the Mid-continent Mississippian Limestone including: 1. 
brecciated chert; 2. skeletal packstone-grainstone; 3. peloidal mudstone-wackestone; 4. 
bioturbated peloidal packstone-grainstone; 5. nodular peloidal packstone-grainstone; 6. 
bedded peloidal packstone-grainstone; and 7. bioturbated mudstone-wackestone. Examples 
of each lithofacies characteristics are depicted in the core and thin section images. Typical 
well-log responses of each lithofacies are shown on the right tracks; including Gamma Ray 
(GR), Resistivity (RT10, RT60, RT90), Bulk Density (RHOB), Neutron porosity (NPHI), 
photoelectric effect (PE), and Compressional Sonic travel time log (DTC). Several wells have 
Spectral Gamma Ray and Nuclear Magnetic Resonance. Routine-core-analysis data including  
porosity, permeability, grain density, and fluid saturation of selected depths are also plotted. 
Note that most porosity measurements in the bioturbated mudstone-wackestone are 
extremely low. This core penetrated  the Woodford Shale and Hunton carbonates. 

6. Core Lithofacies

L1 L2 L3 L4 L5 L6 L7

L1 L2 L3 L4 L5 L6 L7

Figure 10. Core photos and thin section photomicrographs for each lithofacies observed in Devon Energy 1-7 SWD Frieouf: L1. brecciated chert, note that most of the clasts are cherts with both matrix-supported and 
grain-supported textures; L2. skeletal packstone-grainstone,  note that this facies is structureless with common pressure solution filled fractures; L3. peloidal mudstone-wackestone, note the cross lamination  and 
compacted bioturbation; L4. bioturbated peloidal packstone-grainstone, note the original texture is destroyed by bioturbation and possibly glossifungites ichnofacies, whitish areas are silica replacement. L5. nodular 
peloidal packstone-grainstone, note that nodules are irregular (convolute) in shape and show white rind with dark gray center.  Silica-replaced evaporites exhibit laterally coalescing nodules that form horizontal 
anastomosing beds,  organic-matter wisps exist between and drape them; L6. bedded peloidal packstone-grainstone, note the very light gray bed consists of silica-replaced evaporites and fractures are constrained to the 
bed. L7. bioturbated mudstone-wackestone, note the original texture is completely destroyed by bioturbation. 
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Figure 11. Histogram of gamma ray vs. lithofacies.  The histogram 
shows that lithofacies 5 (nodular peloidal packstone-grainstone) 
and lithofacies 6 (bedded peloidal packstone-grainstone) have 
gamma-ray distribution ranging from 10 to 20 GAPI, whereas the 
distribution of gamma ray in other lithofacies generally shows a 
range from 10 to 110 GAPI. This observation suggests that 
preducting lithofacies of the Mississippian Limestone is 
challenging based on gamma-ray values.  

Figure 14. Boxplot shows shape of distribution, its central value, 
and variability of difference between neutron porosity and 
density porosity vs. lithofacies. It shows maximum and minimum 
values, lower and upper quartiles, and median of delta 
NPHI-DPHI in each lithofacies. Lithofacies 1 has a relatively high 
delta NPHI-DPHI value and the widest distribution while other 
lithofacies have a relatively low delta NPHI-DPHI values and the 
smallest distributions with significant overlap. Lithofacies 4 and 6 
have negative values of delta NPHI-DPHI.  

Figure 13. Boxplot shows shape of distribution, its central value, 
and variability of average porosity vs. lithofacies. It shows 
maximum and minimum values, lower and upper quartiles, and 
median of average porosity in each lithofacies. Note that 
lithofacies 3 and 7 have relatively low average porosity and the 
smallest distribution of average porosity. 

Figure 12. Boxplot shows shape of distribution, its central value, 
and variability of RT90 vs. lithofacies. It shows maximum and 
minimum values, lower and upper quartiles, and median of deep 
resistivity (RT90) in each lithofacies. Note that lithofacies 7 has a 
relatively high RT90 value and the widest distribution while 
lithofacies 3 has a relatively high RT90 value with the narrrowest 
distribution. Other lithofacies distributions of RT90 range from 
0.5 to 10 ohm-m but with significant overlap.   

7. Statistical Data Analysis
Figure 15. Score plot of principal component analysis. On first component, 
lithofacies 4, 5, and 6 show similar directions and are therefore challenging 
to be separated. However the three (lithofacies) may be separated from 
lithofacies 7 which has a different direction. It is difficult to separate 
lithofacies 1, 2, and 3 either on first or second component.

Figure 16. Biplot of principal component analysis. On first component, 
training data can be separated by porosity data (NPHI, DPHI, and Avg 
Porosity), sonic log, photoelectric effect (PE), and deep resistivity (RT90). On 
second component, gamma ray (GR), spontaneous potential (SP), and 
difference between neutron porisity and density porosity (Delta 
NPHI-DPHI) have a similar response direction.
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Scatter plot of the ten (10) variables for feature selection of electrofacies classification

Figure 17. Pairwise scatter plot of ten (10) variables for feature selection of electrofacies classification. The plots 
are color-coded by electrofacies. Most, if not all, training data show significant overlap and are challenging to 
separate using basic statistical analysis as well as principal-component analysis. 
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10. Future Work
Basic 2-D statistical analysis for petrophysical properties derived from well-log data such as 
permeability and water saturation will be conducted. In addition, measure of heterogeneity of 
other well-log data including resistivity, permeability, and water saturation will allow further 
investigation to reach the research objectives. 

Following the measure of heterogeneity of petrophysical properties, relationships of the 
heterogeneity logs to geological features will be investigated. The investigation will integrate 
pore types, pore sizes, and mineral compositions derived from multi-mineral analysis, and flow 
zone indicator  (FZI). Once the investigation of Heterogeneity Logs is completed, the next step 
will be feature selection. In this step, input variables for electrofacies clustering will be selected 
to provide curves which give the best homogeneous clustering. 

The final step will be testing the selected input variables (well-log curves and Heterogeneity 
Logs) with Artificial-neural network (ANN) and other clustering methods such as Self-organizing 
Map (SOM) and  Multi-resolution Graph-based Clustering (MRGC)  for electrofacies classification 
to explore if the Heterogeneity Log improves electrofacies classification and reservoir 
characterization in this particular unconventional carbonate reservoir.   

9. Preliminary Observations
1. Based on detailed core description, there are seven (7) lithofacies classes in the Mid-continent 
Mississippian Limestone in study area. The lithofacies are: 1. brecciated chert; 2. skeletal 
packstone-grainstone; 3. peloidal mudstone-wackestone; 4. bioturbated peloidal 
packstone-grainstone; 5. nodular peloidal packstone-grainstone; 6. bedded peloidal 
packstone-grainstone; and 7. bioturbated mudstone-wackestone.
 
2. Basic 2-D statistical analysis provides useful information in terms of classifying the 
electrofacies. However, it has limitations in dealing with multidimensional well-log data and 
often misclassifies the lithofacies due to significant lithofacies overlapping.

3. The 2-m (7-ft) interval Heterogeneity Log is the best for capturing heterogeneity of 
petrophysical properties of well-log data. 

4. The density porosity derived from bul density shows correlation to the Heterogeneity Log. 
The density porosity is observed to increase with increasing heterogeneity in bulk density 
values and neutron porosity heterogeneity values. This relationship may be used for flow-unit 
characterization; however, further research is required. 

Well: FRIEOUF 1-7 SWD
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8. Heterogeneity Logs

Figure 18. The Lorenz Coefficient Heterogeneity Logs for the Mid-continent Mississippian Limestone interval of well Frieouf 1-7 SWD based on 
10-m, 5-m, 3-m, and 2-m (33-ft, 17-ft, 10-ft, and 7-ft) windows. The observation suggests that 2 m (7 ft) Heterogeneity Log captures optimal 
heterogneity in this Mississippian limestones interval. The 1-m window is also used to calculated the Heterogeneity Log. However, the 
response is similar to the original well-log signature.  
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Figure 19. Two (2) crossplots on 
the left show heterogeneity - 
Lorenz coefficient of bulk 
density and neutron porosity 
versus density derived porosity 
(DPHI). The petrophysical 
property derived from the well 
log shows correlation to the 
Heterogeneity Logs. There are 
significant scatter in the cross 
plots. The multilinear 
regression suggest that density 
porosity increases with 
increasing heterogeneity in 
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neutron porosity heterogeneity 
values. However, further 
investigation is needed.  0.
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