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Abstract

Surface waves in seismic data are often dominant and mask primaries in land or shallow-water environments. Separating them from the
primaries is of great importance either for removing them as noise for reservoir imaging and characterization, or for considering them as signal
for near-surface characterization. However, their complex properties, such as dispersion, multi-modality and spatial variability, make the
surface-wave separation significantly challenging in processing. To address the challenges, we introduced a method of 3-D surface-wave
estimation and separation using an iterative closed-loop approach.

The closed loop contains a relatively simple forward model of surface waves and adaptive subtraction of the forward-modelled surface waves
from the observed surface waves, making it possible to evaluate the residual between them. In this approach, the surface-wave model is
parameterized by the frequency-dependent slowness and source properties for each surface-wave mode. The optimal model parameters are
estimated in an iterative way such that the residual is minimized and, consequently, the approach solves the inverse problem.

We applied this method to several data sets to demonstrate its virtues, such as real 3D geophone/hydrophone seismic data onshore/offshore
Abu Dhabi where ground-roll/mud-roll is significantly dominant in land/shallow-water environments. Through the examples, we observed that
the method successfully estimates and separates out the surface waves from the seismic data to consequently obtain the subsurface signals. The
method provides a better result than a conventional slowness/velocity-based filtering method which cannot handle both surface waves and
subsurface signals overlapping each other. We also observed its wide range of applicability to under-sampled, asymmetrically sampled,
irregularly sampled and blended seismic data. This suggests the possibility of relaxing requirements for seismic survey parameters in terms of
surface-wave separation and, therefore, offers flexibility as well as potential effort reduction with respect to seismic surveys. It should be noted
that recent advances in acquisition, such as point receivers and a large amount of stations, make the method more effective because of the
improved spatial sampling of surface waves without negative array effects.
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properties

« Dispersive
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Surface-wave separation Delph

Surface waves
— traditionally treated as noise, masking primaries.
— today regarded as signal, for near-surface characterization.

Estimating them and separating them out from seismic data is important for
both applications.

P =P+N

N : Surface waves
P : Subsurface signals

(P+N) : Seismic data
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Methods of surface-wave separation Delph

« Slowness/velocity-based filtering methods
(e.g. Yilmaz, 2001)

« Data-driven, data-adaptive and model-based method
(AROGA; Le Meur et al., 2008, 2010)

« Data-driven, data-adaptive and model-based method using an iterative closed
loop
(SWES+; Ishiyama et al., 2014, 2015)

« Near-surface model-based method
(SWAMI; Strobbia et a/.,, 2010, 2011)

« FWI-based methods (e.g. Ernst, 2013)
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Real data examples

« 3D land data acquired onshore Abu Dhabi
(1) Less-aliased vertical geophone data
(2) More-aliased vertical geophone data

AX, = Ay, =25 (m) Ax, = Ay, =50 (m)

Receiver:
Arrayed geophones

Source:
Vibroseis with 6 Hz to 80 Hz
linear sweep




Some aliased energy exists even (P+N) 0 (P+N) .y
around small wavenumbers. Delphi

—_—
o

Time (s)
-
Frequency (Hz)
o

N
o

C gl

30
-15-10-5 0 &5 10 15 20

AX, = Ay, =25 (M)

y (km)
y (km)
ky (/km)

" 15-10-5 0 5 10 15 2




(P+N) <N > <P> e

0 0 0
IR EEEN
Delphi
0.5 0.5 0.5 .
1 1 1
15 v15 o 1.5
£ E £
= = =
2 2 2
2.5 2.5 2.5

y (km)
y (km)




y (km)

y (km)

<N >

0.5

1.5

Time (s)

y (km)

<P >

AN R
Delphi




0 0 0
Less-aliased .DEI p.h| E
5 !
' Hl.l.
. i
™ ~ 10 e ™ ) 7o
) Lz B ) I-. i il 1"||' s |'-.-'|
> > | > . E |'|| i .- '-|'-'"|
o o 15 o 15 ' i Wil
o ) o " g
> > >
o o o
b & 20 b
25
- x o Rl ‘o .._ _. o ; -.: 5 . 30 : 4 J ; -. o) f, .
-15-10-5 0 5 10 15 20 -15-10-5 0 5 10 15 20 -15-10-5 0 5 10 15 20

ky (/km)

101520 245105 0 5 10 15 20

= 2
T wUkm) D T kx Ukm)




(P+N) <N > <P > .
Less-aliased

0

. 1 ey
~ 10 ~ ~ 10 :
J .".'r "l "".."Ill"l |.
iE'\i Ir." *1'. E:’:' g T- ||
el iy < S
(&) 15 o | i . ".. () %) 1 '||'||#l |
C . i LR 1 dnley 1 C - 1|
Qo 1 TLEH E ) [} I:Ii
-] ) >
o S S
- 20} I i 2018

25k Even the aliased surface 25

. waves are estimated. .
30 i A | 30 k » d |
-15-10-5 0 5 10 15 20 -15-10-5 0 5 10 15 20 -15-10-5 0 5 10 15 20

_ kx (/km) 7 kx (/km) 7 kx (/km)

ky (/km)
ky (/kmj

20 5105 0 5 10 15 20




-~
Only aliased energy exists in the
whole range of useful

frequencies.
N

Time (s)
o

Ax, = Ay, =50 (m)

y (km)
o
y (km)

(P+N)

Frequency (Hz)

— —
o1

N
o

o

(P+N)

AN R
Delphi




aliased

More

(s) ME_._.




aliased

More

(s) ME_._.




More-aliased

0

Frequency (Hz)

ky (/km)




(P+N) <N > <P> e

More-aliased

0

/\1 N N
N N N
I I I
N— ~— N~—
> > >
o1 (§) o
5 5 5
-] -] -]
o o g
82 o .
L L L

Even the aliased surface
waves are estimated.

ky (/km)
ky (/km)
ky (/km)
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« 3D OBC data acquired offshore Abu Dhabi
(1) Un-aliased hydrophone data
(2) Aliased hydrophone data
(2)" The above data with a conventional filtering method

AX, = Ay, =25 (m) Ax, = Ay, =50 (m)

Receiver:
Single point hydrophone

Source:
Arrayed air-guns
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« 3D OBC data acquired offshore Abu Dhabi
(1) Irregularly sampled hydrophone data
(2) Blended hydrophone data

Ax, = Ay, =50 (m) Ax, = Ay, =50 (m)
T 21.-035 ¢ .
g e -~ Receiver:
o Ao S Single point hydrophone
Source:

Arrayed air-guns
as a single point source (1)
1 ® 1.-15 35 ablended source (2)

y (km)
o
L
=
Il
(@D)
w

<Epiiic

s




Irregularly.
samplect -

o TR
L TR

M a1

AT o ol B AR

Bh e w e el
2

AT W S S . S

BN AR AN AT Al M AN

R TR W W W

AR5 L )

M W T T T
F N E e R EE s e R

» s
oo v ¥

1.25s




(P+N)

Irregularly
| sampled

by Lyﬁ##nﬁnﬂ e i

<N >

0

3]
by gﬁi J-wr.ﬁn-hhi-}.; [

~ 108 ~ 108 ~ 10
3 7 e o S ¥ i e el S
> . “, [
S 15 ; S 15 S 15
s S s
S S S
|I20 Ezo |I20

N
($)]
N
(¢
N
(&)

30 | ' 30
-15-10-5 0 5 10 15 20 -15-10-5 0 5 10 15 20 -15-10-5 0 5 10 15 20
kx (/km) kx (/km) kx (/km)

B 10 Hz

wW
o

-15-10-5 0 5 10 15 20 20 -15-10-5 0 5 10 15 20 20 -15-10-5 0 5 10 15 20
kx (/km)



(P+N)

Irregularly
| sampled

3]
iﬁ'ﬂ“flﬂﬁi'j_ﬁv.ﬁnﬁ Fhe E-.-.*I. Ly_ﬁiﬂ-wrﬁﬂwq [
o : \‘H-

0

o

Frequency (Hz)
o 5

Frequency (Hz)
o

N
o

—h

N

",

N

o
N
o

Frequency (Hz)

N
(&)

Random noise due to the
irregularly sampling.

wW
o

-15-10-5 0 5 10 15 20 -15-10-5 0 5 10 15 20 -15-10-5 0 5 10 15 20
kx (/km) kx (/km) kx (/km)

B 10 Hz

-15-10-5 0 5 10 15 -15-10-5 0 5 10 15 20 2 -15-10-5 0 5 10 15 20
kx (/km)




(P+N) <N > <P > ———

Irregularly
| sampled

0

9 )

LAY i . Ay i .
b T g T T b T i AT

108

—h

P 0 o N P

N : ] N ] N

z #: : BT T e : A T
> L S A >

(&) (&) (&)

S 158 0 S 15
()] L 1 () (]

o > o
220 o 220
LL LL

Even the randomly
sampled surface waves
are estimated.

N
($)]

30 30
-15-10-5 0 5 10 15 20 -15-10-5 0 5 10 15 20 -15-10-5 0 5 10 15 20
kx (/km) kx (/km) kx (/km)
15 10 Hz 15 10 Hz
~1088 ' ~1088
S 0 S 0 S
< 5 2 5 2
108 108
15 15

20 -15-10-5 0 5 10 15 20 20 -15-10-5 0 5 10 15 20 20 -15-10-5 0 5 10 15 20

‘70 kx(km) O kx (/km)







o Lo o
— N

,IANIV Aouanbau

Lo o
— N

,IANIV Aouanba.

Lo
— N

,IANIV Aouanba. (wy/) A




(P+N) <N> <P>

— —
1 o

N
o

Frequency (Hz)
Frequency (Hz)

N
1

Notch effect due to the
blending.

w
=

ky (/km)
ky (/km)
ky (/km)

kx (/km)




(P+N) <N> <P>

—
o

Frequency (Hz)
o

Frequency (Hz)
o

N
o

20

Even the blended surface
waves are estimated.

Frequency (Hz)

ky (/km)

kx (/km)




=
LAY
# )

"GEOZ

12th Middle East Geosciences Conference and Exhibition

Outline

« Conclusions and remarks




Conclusions and remarks Delphi

« The proposed method addresses the surface-wave properties, i.e., dispersion
and multi-modes.

« The method is data-driven and data-adaptive,
automatically taking into account physical phenomena such as spatial variation,
attenuation, anisotropy, etc.

« The method can be applied in any geometry domain, i.e., in any gathers.
It can be applied to under-sampled, asymmetrically sampled, irregularly sampled
and blended seismic data.




A
HEEERN
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« This suggests the possibility of relaxing the spatial sampling interval, encourages
random sampling / blending, and offers flexibility with respect to acquisition
geometry.
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