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Abstract 
 
In complex geological settings with a great degree of heterogeneity in reservoir properties such as submarine channel complexes, as in Nile 

Delta province, we face the challenge of characterizing the reservoir based on different seismic attributes. Direct Hydrocarbon Indicator (DHI) 

and Amplitude Variation with Offset (AVO) analysis techniques proved very impressive results delineating the gas bearing reservoirs, 

especially in the clastic systems. However, low quality facies or low saturation reservoirs give the same seismic amplitude response. The pre-

stack seismic inversion products such as P-impedance, Vp/Vs and Lambda-Mu-Rho (LMR) can provide more realistic quantitative reservoir 

characterization. Absence of control wells and/or pre-stack seismic data makes it impossible to use the pre-stack inversion approach. In 

addition, quantitative prediction of hydrocarbon saturation from seismic is ambiguous because of their independent nonlinear relationship with 

conventional seismic attributes and inversion products. 

 

Hydrocarbon saturation prediction away from the well is essential to characterize reservoir effectively. Therefore, a special approach has been 

adopted which is Probabilistic Neural Network (PNN) analysis to predict hydrocarbon saturation 3D volume using full-stack seismic data and 

Hydrocarbon saturation logs. In this case study, we applied the proposed neural network workflow over one of the late Pliocene gas sandstone 

reservoirs in West Delta Deep Marine (WDDM) concession, offshore Nile Delta, Egypt. The resulting volume was then tested using a blind 

well that hasn’t been used in the analysis. The predicted volume contains fine details that will help for better delineation of hydrocarbon-

saturated reservoir in 3D space. 
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Area of Study 
• Egypt 

• Offshore Nile Delta 

• West Delta Deep Marine (WDDM) concession covers 6150 km² 

• The Sequoia Field is a Pliocene gas field located 90 km north of 

Alexandria in water depths of 250-850 m. 

 

(modified from Mohamed et al., 2014 and Samuel et al., 2003) 
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Nile Delta – Tectono-Stratigraphic Setting 

(modified from Reading and Richards, 1994) 

(modified from Abdel Aal et al., 2006) 

WDDM Simplified Model 

Nile Delta stratigraphic column 
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The Sequoia Field – Geological Overview 
 

• Multi-stacked canyon systems 
with complex turbidite channel-
levee reservoirs. 

 

• Canyon-fill of sandy channels, 
levees, crevasse splays, overbank 
deposits and slumps with multiple 
fill and incision. 

 

• Sequoia channel system: 10’s km 
long, c.5km wide and up to 200 m 
thick. 

 

 

(from Samuel et al., 2003) 
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Large-Scale Reservoir Architecture 
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Sequoia Channel Evolution Summary 
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Sequoia Channel Evolution Summary 
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(from Cunningham et al., 2010) 
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Sequoia Field Well Data 

• Multiple stacked channels that are up 
to 200 m in gross thickness, 77 m of 
pay 

  

• An average non-shale porosity of 24%  

 

• An average water saturation of 34% 

Top 
Channel 

Base 
Channel 
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Probabilistic Neural Network 
 

• The PNN can be used either for classification or for mapping. 

 

• How it works 

 

• The PNN finds the weights that depend on the distance from the desired point 
to the training points.  The distance is measured in multi-dimensional attribute 
space. 
 

• The distance is scaled by smoothers (the sigma values), which are determined 
automatically by cross-validation. 

 

• The weighting functions are multiplied by the known log values to determine 
the unknown log values. 

 

• Theoretically, it  can predict any log property. 
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The basic architecture of multi-layer feed-

forward neural network (Hampson et al., 2001) 



PNN – Workflow  
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PNN – Input Well Data 
• Seven wells used in the study 

• Rosetta-10  

• Sapphire-2 

• Sequoia-D1, -D2, -D3, -D4 & -D6 

 

• Two “blind” QC wells 

• From Sequoia field: Sequoia-D5  

• From Saurus field: Saurus-Db  
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PNN – Well Data Conditioning 
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PNN – Training and Validation of the Network 
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Results – Sequoia Field, Sequoia-D3 Well Location 
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Results – Sequoia Field, Sequoia-D5 “Blind” Well Location 
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Results – Saurus Field, Saurus-Db “Blind” Well Location 
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Results – Sequoia and Saurus Fields 

Introduction => Probabilistic Neural Network => Results => Interpretation => Conclusions 

544801 

1026000 - --+----+-----j------1\----1-

102(0110 ----+----+-----j------1--+- --\ 

o 1 102Z011O ----+----+-----j------1----'\---1ll~.~ 

Hydrocarbon Saturation 



Results – Sequoia and Saurus Fields 
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Interpretation – Spectral Decomposition, Variance and Saturation 
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Interpretation – Spectral Decomposition, Variance and Saturation 
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Interpretation – Variance and Saturation 3-D View 
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Interpretation – Sequoia Channel Evolution  
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Interpretation – Sequoia Channel Evolution  
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Interpretation – Sequoia Channel Evolution  
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Interpretation – Sequoia Channel Evolution  
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Interpretation – Saturation Prediction for New Exploration Targets 
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Discussion 
• Advantages 

• Fast training process  

• Can invert the full-stack seismic to any log property 

• Results show acceptable correlation even with far fields 

 

• Disadvantages 

• Large memory requirements  

• Application time to the 3D volume is large 

• Application time is proportional to the number of training samples 

• Needs at least three wells  
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Conclusions 
 

• Probabilistic neural network successfully predicts hydrocarbon saturation 3-D volume with good accuracy  

• Better delineating hydrocarbon-saturated reservoir in 3-D space.  

• Contributes to optimal well placement, Gas Initial In-Place (GIIP) calculation and improves the field development 
plan. 

 

• Using of high-resolution spectral decomposition along with variance and hydrocarbon saturation provide an 
excellent 3-D insight into the sand-body makeup and depositional evolution. 

 

Future work 

• Apply the PNN to produce other petrophysical important volumes such as Vcl, porosity …etc. 

• Apply the proposed workflow to other Pliocene gas fields. 
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