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Abstract 

Despite international will and policies for reducing the dependency on fossil fuels, Petroleum is still considered as an essential resource to 

match the demand for petroleum in the coming decades. In order to match the long-term growing demand for petroleum, unconventional 

resources have taken a significant part of the petroleum offer (5-6 Mbd). The interest for these resources renewed the efforts of research on the 

mechanisms of petroleum generation, retention and expulsion. Since the source rock also acts as a reservoir in these systems, it also gave 

access to a large number of source rock samples compared to what was available when the interest was only on conventional petroleum 

systems, paving the way to interesting new studies.  

Though some recent debates on the role of thermodynamics (Uguna et al., 2012) in the conversion of solid organic matter into fluid petroleum, 

the most accepted way to model this conversion remains the kinetic approach. This latter is mostly used, in combination with basin modeling or 

not, to predict the state of maturity of source rocks, the amount of generated petroleum and some other mechanisms related to expulsion and 

retention. Consequently, for exploration perspectives, the main objective when determining kinetics parameters is to get a predictive model of 

transformation of the organic matter in oil and gas under geological conditions (several millions of years at temperatures ranging between 80 to 

200°C).  

While first authors proposed kinetic models mostly basing their interpretations on field data (Lopatin et al., 1971; Tissot, 1969; Tissot and 

Pelet, 1971; Waples, 1980) kinetics parameters are currently mainly determined using artificial maturation procedures in laboratories. All these 

experimental maturation techniques are performed either using isothermal or non-isothermal temperatures with temperatures ranging between 

200 and 700°C associated with heating times span varying from some minutes to few hundreds of hours (e.g., Behar et al., 2008; Lewan and 

Ruble, 2002). Thus, these laboratory conditions are far from the geological domain. A lot of efforts were put on compositional description of 

kinetics, and there was tremendous progress in analytical techniques and modeling capacities to better understand chemical processes and 

characterization of the generated petroleum composition (e.g., Behar et al., 2008; Fusetti et al., 2010). However, previous and recent studies 

emphasized some inconsistencies or shortcomings in the way kinetic parameters are currently determined (e.g., Prinzhofer, 1994, unpublished). 

They can lead to strongly erroneous prediction in the maturity of source rocks at regional scale. Indeed authors usually provided only a unique 
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possible solution to the kinetic parameters inversion problem; they dedicated little efforts to perform real validation of this unique proposed 

solution and did not assess their predictivity at laboratory or geological time scales. Even if the problem is not new (e.g., Ungerer and Pelet, 

1987; Ungerer, 1989), it was kept at the bottom of the research priority list and remains unsolved. The recent attention to unconventional 

resources to supply global oil and gas needs has led to a rising interest both to better constrain the determination of kinetic parameters and 

assessing the uncertainties of their determination that appeared. 

  

It seems now clear that in order to better constrain the determination of kinetic parameters for petroleum exploration, laboratory transformation 

data are not sufficient. Now, with new modeling techniques, such as basin modeling, we are able to better determine temperature history at 

basin scale, and then it is possible to estimate quite accurately the temperature history of any sample of rock. Based on the new data and 

samples derived from the production of unconventional resources, these reservoirs-source rocks can be used to better constrain kinetic 

parameters of organic matter conversion into petroleum by coupling basin modeling and laboratory experiments.   

 

We applied this new approach, combining both usual laboratory immature source rock maturation results with observed characterization data 

coming from naturally mature samples also completed by laboratory maturations. For this natural series the temperature history was 

reconstructed based on basin modeling techniques. To get an uncertainty risk on the kinetic parameters, we provided not a unique set of kinetic 

parameters but the sets of parameters that fit equally well the constraining natural and artificial data. Finally the optimization procedure was 

revisited to keep the transformation description as simple as possible (no more complex than what is suggested by the data), using some inputs 

from the theory of information. 
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Introduction 

 

 Why do we need kinetics and how do we use them? 

 Reminder on source rock maturation 

 

 How do we determine kinetics and what are their current 
limitations? 

 

 Current work and perspectives 

– Better constraints on kinetics 

– Better spatial prediction of source rock reactivity 
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Petroleum system 
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Natih Petroleum System (Pollastro, 1998) 



Petroleum system 
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Natih Petroleum System (Pollastro, 1998) 



Source rock maturation: 
reminder 

Dow (1977) 
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Source rock maturation: 
reminder 

Dow (1977) 
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Source rock maturation: 
reminder 
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Lewan and Ruble (2002) 
Modified from Vandenbroucke and Largeau (2007) 

Atomic composition (organic matter type) 

Type I   GRS 

Type III   Kerbau 

Type III   Logbaba 

Type II   Toarcian 



Kinetics: 
Optimisation of kinetic parameters 
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Kinetics: 
Shortcomings and limitations 

A = 1E13s-1 A = 1E14s-1 

A = 1E15s-1 A = 1E16s-1 

Mean Ea = 

51kcal/mol  
Mean Ea = 

54kcal/mol 

Mean Ea = 

57kcal/mol  
Mean Ea = 

60kcal/mol  
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Graph illustrating the misfit of the kinetics on measured data as a 

function of the mean activation energy (E) and the frequency factor (A) 

All these (E, A) couples are solution 

of the optimization problem 



 Propagation of uncertainties on kinetics determination to maturity 
estimation at basin scale using TemisFlow:  
Application to the Cenomanian source rock of the Levantine Basin 

 

Kinetics: 
Shortcomings and limitations 

P50 P10 P90 

Transformation ratio 
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Kinetics: 
Shortcomings and limitations 

Noise or information? 
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Current work: 
Back to the petroleum system 

Romero-Sarmiento et al. (In progress) 
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Current work: 
Back to the petroleum system 

Romero-Sarmiento et al. (In progress) 
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Reconstruction of paleo-temperatures Artificial maturation in lab 

For each sample (mature or immature) we proceed to: 
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Current work: 
New optimization procedure 

Data: natural series and 

laboratory experiments 
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Current work: 
New optimization procedure 

Simpler kinetics  
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… still very well calibrated 

on laboratory data 

… and also on 

natural series 
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Current work: 
New optimization procedure 
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Reduction of 

uncertainty 

on kinetics 

Most important expected result from a basin analysis perspectives 

Current uncertainty on kinetics Expected uncertainty 



Kinetics: 
Perspectives 

Bou Daher et al. (Submitted) 
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Perspectives 

 

Oxygen content 

TOC (%) 

Oxic  Anoxic  

Lewan and Ruble (2002) 

Sulfur content 
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Modeling of the organic matter properties and 

distribution in the Natih Fm. using DionisosFlow 

Chauveau et al. (2016) 
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Conclusions 

 Kinetics are important for petroleum system analysis 

 

 Laboratory techniques are crucial to characterize source rock 
maturation BUT there are still limitations in kinetics predictivity 

 

 Coupling laboratory data and natural series (with basin 
modeling paleohistory reconstruction) can lead to more 
predictive kinetics (timing) 

 

 Stratigraphic models (e.g., DionisosFlow) could help to make the 
link between deposition environment and kinetics and lead to 
more predictive generation timing at basin scale 

25 



 

 

 

 

Thank you for your attention 
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