Integrating Seismic Elastic Properties and Discontinuity Analysis into Reservoir Modeling and Simulation – A Case History from the Gulf of Mexico Shelf*

Randal Utech¹, Dan Shan¹, Ellya Saudale¹, Dianna Shelander¹, Kirk Rodgers¹, Ahmed Ammar², Tim Wilkinson², and Rick Clark²

Search and Discovery Article #41820 (2016)**
Posted June 27, 2016

**Datapages © 2016. Serial rights given by author. For all other rights contact author directly.

¹Schlumberger, Houston, Texas (rutech@slb.com)
²Energy XXI, The Woodlands, Texas

Abstract

Effective integration of seismic information into reservoir modeling and simulation may significantly improve the understanding of the reservoir, leading to enhanced field recovery, better field management decisions and improved identification of un-swept potential for new drilling opportunities.

Conventional reservoir modeling and simulation studies frequently underutilize seismic information. Wells sample the earth with high vertical resolution at a single location, but seismic provides highly sampled information in the intra-well space. The utilization of depth calibrated, properly conditioned intra-well seismic information can lead to better definition of the reservoir and simulation results.

The classification of elastic properties obtained from pre-stack seismic inversion can be used to populate lithology distributions in the reservoir model and to improve delineation of the reservoir. Seismic discontinuity analyses provide a framework for candidate reservoir compartment baffles and barriers. Together, these seismic properties serve to enhance the accuracy of the geologic model and lead to a better understanding of reservoir drainage dynamics.

A seismic to simulation study of the J6 ‘Pod B’ reservoir in Main Pass 61 demonstrates the value of integrating seismically derived litho-fluid properties to define reservoir boundaries and facies distributions. Effective porosity is modeled using well petrophysics and seismic trends obtained from a multivariate analysis of elastic properties, including litho-fluid probability volumes derived from Bayesian rock physics classification. Further, seismic discontinuity analyses provided a means to identify compartment boundaries, baffles and lithologic barriers to fluid flow. The modeling and simulation results highlighted the complexities of reservoir and provided a key basis for new drilling designed to drain unswept oil. The drilling results from four successful post-study wells served to substantiate the simulation model which identified 4 MMBO of additional recoverable reserves.
Selected Reference

Integrating Seismic Elastic Properties and Discontinuity Analysis into Reservoir Modeling and Simulation – A case history from the Gulf of Mexico Shelf

Randal Utech, Dan Shan, Ellya Saudale, Dianna Shelander and Kirk Rodgers, Schlumberger
Ahmed Ammar, Tim Wilkinson, and Rick Clark, Energy XXI

AAPG Geosciences Technology Workshop
Seventh Annual Deepwater and Shelf Reservoirs
25-27 January 2016
Houston, Texas
Objective

- To increase the understanding of the J6 reservoir and its drainage dynamics in order to optimize production and recovery
- Our focus was to develop a more accurate dynamic simulation model in order to:
 - Refine estimates of recoverable oil
 - Optimize water injection, workovers and completions
 - Identify unswept oil for new drilling opportunities
 - Support reservoir management and development decisions
Main Pass 61 Pod B

Field discovered in 2001,
- Produces from several stacked reservoirs
- Main formation is Upper Miocene ‘J6’ sand
- Depth range: ~7400-8200 ft. TVDSS

Cumulative Production (2002–2012):
- 17 million bbl of oil
- 12 billion ft3 of gas
- 9 million bbl of water
- 22 million bbl of injected water (starting 2003)

As of July 2012, the field had:
- Six active wells (5 producers and 1 injector)
- 14 penetrations since discovery

Prior to this 2012 study, the legacy simulations and drilling results suggested that a better reservoir model was needed.
Improving the reservoir model

Conventional studies often underutilize seismic - An improved approach would:

1. Use seismic inversion to improve reservoir delineation
2. Populate the reservoir model with estimates of seismic lithology
3. Use seismic discontinuity analysis to evaluate baffles and barriers to fluid flow

Geophysics

- Prestack seismic inversion
- Lithofluid prediction
- Seismic discontinuity analysis

Geological model

- Use elastic properties to populate the model and extrapolate lithofacies
- Incorporate baffles/barriers from seismic into the model

Simulation

- Identify fluid flow pathways using co-populated model
- Identify the transmissivity of barriers with history matching
- Develop a better dynamic model for field development
Net Sand Thickness Models

2010 Hand-Contoured
Well-based modeling without seismic enhancements.

2011 Amplitude RAI
Revised using relative acoustic impedance (RAI) geobodies.

2012 Inversion and LFP
Enhanced by integrating prestack inversion and lithofluid prediction.
Workflow: Integrating Seismic Information

Prestack AVO Inversion

Prestack Seismic

P- Impedance

S- Impedance

Density

Conditioned Angle Gathers

Rock Physics Analysis (Wells)

Well 1

Well 2

Bayesian Lithology Classification

Seismic LithoClass Probability

P (High Quality Pay)

Discontinuity Analysis

Fault Attribute

Seismic

Ant Track Cube

Fault / Baffle Analysis

Contour Plot and Projected Marginal pdfs

2-D and 3-D PDFs

Interpretation

Property Modeling

Geologic Modeling

Reservoir Simulation

Copyright © [2013-2016] Schlumberger. All rights reserved.
Seismic Conditioning and Well Ties

- Spatially consistent velocity analysis
- Parabolic radon transform for multiple removal
- F-Kx-Ky filtering for footprint removal
- TauP processing for signal enhancement
- Non-Rigid Matching for gather flattening
- RAAC and Angle stack creation (7 angle bands)
- Phase correction

The input seismic consisted of prestack depth migrated data.
Seismic Conditioning and Well Ties

- Spatially consistent velocity analysis
- Parabolic radon transform for multiple removal
- F-Kx-Ky filtering for footprint removal
- TauP processing for signal enhancement
- Non-Rigid Matching for gather flattening
- RAAC and Angle stack creation (7 angle bands)
- Phase correction

Prestack gather trace offset-angle bands

Synthetic tie and wavelet analysis completed for each angle set
Simultaneous Prestack Inversion and Quality Control

Well log (grey curve)

Inversion result (red curve)

Acoustic Impedance

MP61 B1ST
MP61 B2
MP61 B3
Simultaneous Prestack Inversion and Quality Control

Well log (grey curve)
Inversion result (red curve)
Simultaneous Prestack Inversion and Quality Control

Well log (grey curve)

Inversion result (red curve)
Rock Physics Analysis

Rock Class Petrophysical Definition

Wet sand: $V_{sh} < 15\%$, $S_w > 60\%$
Shaley sand: $15\% < V_{sh} < 38\%$
Shale: $V_{sh} > 38\%$
HC sand: $V_{sh} < 15\%, S_w < 60\%$

Log Elastic Properties / Petrophysics

Elastic Property Probability Distributions by Rock Class

Wet sand
Shaley sand
Shale
HC sand
Stack Seismic—Well Tie Line

Top J-6

Base J-6

OWC
Acoustic Impedance—Well Tie Line

Top J-6

Base J-6
Shale Probability—Well Tie Line

Prior Top (RAI model / Interpretation) J-6

Top J-6

Base J-6

Prior Base (RAI model) J-6
Improving delineation of the reservoir

The inversion geobodies were truncated by the legacy boundaries of the model.
Improving delineation of the reservoir

Modification of J6 reservoir boundaries based on AI and hydrocarbon probability
Improving delineation of the reservoir

Modification of J6 reservoir boundaries based on AI and hydrocarbon probability
Populating the reservoir model—AI

Cell size 100'x100'x5'

Acoustic Impedance
Populating the reservoir model—AI

Acoustic Impedance

Cell size 100’x100’x5’
Populating the reservoir model—PHIEQ

Cell size 100'x100'x5'

PHIEQ AI / Class
Populating the reservoir model—PHIEQ

Cell size 100’x100’x5’

PHIEQ AI / Class
Average PHIE by Lobe (AI derived)

- Lobe A: \(\text{PHIE}_{\text{Ave}} = 23\% \)
- Lobe B: \(\text{PHIE}_{\text{Ave}} = 20\% \)
- Lobe C: \(\text{PHIE}_{\text{Ave}} = 14\% \)
Populating the reservoir model—S_w

Water Saturation

Cell size 100'x100'x5'

Copyright © [2013-2016] Schlumberger. All rights reserved.
Populating the reservoir model—S_w

Water Saturation

Water Saturation

Cell size 100'x100'x5'

Copyright © [2013-2016] Schlumberger. All rights reserved.
Analysis of Seismic Discontinuities

Seismic discontinuity analysis provides a framework for classifying subtle faults and reservoir compartments.

Discontinuities may be baffles, barriers or conduits.

This analysis consisted of two parameterizations of Ant Tracking:

1) Primary faulting

2) Subtle faults, baffles, barriers and reservoir compartments

Candidate fluid flow baffles and barriers obtained within the J6 reservoir.
Robust Model Integrates Ant Tracking Baffles and Barriers

Lobe A
Manual barriers
Legacy simulation

Lobe B
Manual barriers
Legacy simulation

Copyright © [2013-2016] Schlumberger. All rights reserved.
Robust Model Integrates Ant Tracking Baffles and Barriers

Lobe A
Manual barriers
Legacy simulation

Lobe B
Manual barriers
Legacy simulation
Preferential Water Pathways in Lobes A & B

Acoustic Impedance Geobody and Baffles
Example: C5ST1 Injector and B8 Baffles

Shalier facies
Lower PHIE

AI extraction
Upper Lobe A

AI extraction
Lower Lobe A

GR Res
15' Oil

OWC

Baffles

MP61_C5ST1

MP61_B8

Shalier facies
Lower PHIE
Example: C5ST1 Injector and B8 Baffles

OGC

MP61_B8

MP61_C5ST1

Shale facies

Lower PHIE

Al extraction

Lobe B

GR Res

15' Oil
Simulation—Water Saturation
Simulation—Water Saturation

Acoustic Impedance
Simulation—Water Saturation
The Field History Match: Oil Rate, Water Cut, Gas-Oil Ratio, Water Injection Rate, and Pressure
Pod B Results:

- Increased recoverable reserves by 4 MMBO+
- Identified means for recovery: New drilling locations and workover opportunities
- EXXI implemented workovers and drilled 4 new successful wells.
2012 PHIE Model Observed at New Wells

Gaussian Random Function Simulation using collocated co-kriging of AI as the trend model (2012)
2012 PHIE Model Observed at New Wells

Gaussian Random Function Simulation using collocated co-kriging of AI as the trend model (2012)
2014 PHIE Model Update with new wells

Kriging with collocated co-kriging of a Multivariate Seismic Trend Model (2014)
Multivariate Trend Model from Seismic

Shale Probability

Shaley Sand Probability

Wet Sand Probability

HC Sand Probability

Acoustic Impedance

PHIE Multivariate Trend

K-Layer 18
Conclusions

Effective integration of seismic information is an important step in optimizing field recovery.

The results of this study:
• Led to significantly improved understanding of the reservoir and production dynamics.
• Provided an important basis for field management and development decisions.
 • Increased recoverable reserves by 4 MMBO+
 • Identified means for recovery: New drilling and workover opportunities
 • Drilled successful wells at optimum locations
Acknowledgements

We would like to thank Energy XXI for their contributions and support of this and associated publications:

- 2013 SEG International Exposition 83rd Annual Meeting Houston
- Gulf Coast Association of Geological Societies and the Gulf Coast Section of SEPM 64th Annual Convention - Lafayette
- Geophysical Society of Houston Journal June 2014
- 2014 SEG/SPE/AAPG/SPWLA/EAGE Summer Research Workshop – San Diego
 Multi-disciplinary Static and Dynamic Reservoir Modeling: Best Practices, Opportunities and Challenges
- AAPG Seventh Annual Deepwater and Shelf Reservoirs Technology Workshop January 27th, 2016

Corresponding Author: Randal Utech, Schlumberger, Houston TX, tel. 713-208-2218

Copyright © [2013-2016] Schlumberger. All rights reserved.