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Abstract

Fault seal capacity is an important component in the conventional petroleum system. Assessing the capacity for a fault to seal or
leak can be difficult to determine, particularly where well constraint is lacking. In the frontier basin, in a marine setting, seismic
velocities may be the only data available. However, useful constraints on a faults sealing capacity can be extracted from this data
alone. This study investigates the robustness of a number of empirical relations that can assist in extracting useful constraints
from seismic velocities and amplitudes. Information on maximum and minimum stress magnitudes and pore pressures can be
calculated and combined with basic fault architecture analysis, to place practical constraints on fault risk. A study area on the
Rankin Trend, North West Shelf of Australia, found good correlation between well-based and seismic velocity-based pore
pressures and stress magnitudes allowing a Coulomb Failure Function to be calculated. Faults separating the Rankin 1 well
block from the Dockrell/Keast Field were shown to be within a stable stress regime. Well data for this area confirms a SHmax
orientation of approximately 110° N +/— 10° indicating that steeply dipping faults striking within 20° of this direction may be at
high risk of failure within the neotectonic setting, where stress magnitudes, pore pressures, and fault geometry predicate fault
slip.
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Questions

» Fault seal capacity is a direct reflection of the
permeability of the resulting fault gouge and
dependent on several factors, including the
seismicity of the fault and stress state conditions
necessary for fault reactivation.

» The Coulomb Failure Function describes this
critical condition useful in assessing fault risk.

» This study investigated of the robustness of using
standard rock physics models to utilise seismic
data for estimation of the Coulomb Failure

unction.




West Dampier and Rankin Trend, North
West Shelf Australia
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Demeter 3D MSS and the study
area over the Rankin Block
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Velocity profile accross the base
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Fault Architecture of the

Fault block display
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Stress tensors and the Coulomb

Failure Function

The Coulomb Failure Function

CFF = as_ﬂs(an_Pp)

» The Overburden
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» What about horizontal stress (Shmin and

amax)- Constraining the magnitude?
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Maximum horizontal stress and
the stress regime
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Calculating Pore Pressure from the
Velocity

Pore pressure comparison between RFT and Pore pressure (psi)
velocity measurements on Rankin 1 3551 . 76 ‘
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Which faults might reactivate?

CFF comparison for three fault planes within the
Rankin Fault Block with Rankin Block Pore Pressures
CFF (psi)
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Conclusions

» This study has shown that useful constraints on pore pressures
and stress tensors can be estimated from seismic velocities.

» When combined with a basic fault architecture assessment (dip,
strike, sense of offset, and evidence of reactivation), and an
understanding of the implications of this architecture in terms of
kinematics, an assessment of fault seismicity can be made.

» A case study of the Rankin and Dockrell/Keast fault blocks shows
that there is correlation between measured data and empirically
derived values using standard rock physics models. They show
that the main faults separating the Rankin and Dockrell and
Keast fault blocks are in a stress regime suggesting further fault
reactivation is unlikely.

» High vertical sampling and forward modelling of velocities
required to achieve the practical degree of confidence
recommended for pressure and lithology measurements.

Questions?




