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Abstract 

 
Shale gas strata, important energy supplies in North America, are projected to become important as well in Europe, Latin America, and Asia in 
the near future. Gas and oil production from these fine-grained reservoirs is technically challenging, however fluid flow as observed in field is 
much higher than predictions based on conventional models (Darcy’s equation). Clear understanding of gas/liquid flow in these natural, fine-
grained, porous systems is necessary in making capital investments, as well as in making field-development decisions by governments and 
major oil companies. This talk presents detailed discussion of gas and liquid flow in tiny pores (nanometer scale). Novel research methods and 
challenges for reserve estimation and permeability predictions will also be presented.  
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Outline 

 Brief introduction of nanophysics
 Shale system
o Gas-in-place and transport
 Diffusion in kerogenic material
 Lost gas
 Stochastic permeability model

o In-situ gas chromatography separation
o Liquid flow and fracture fluid loss 



What is nanoscience? 

Nano refers to one-billionth of something (10-9)

e.g., nanograms, nanoliters, nanometers

Diameter of a hair string: 75,000 nm

Pores in sandstone: 50,000 nm

Red blood cell: 7,000 nm

Pores in shale: 10 nm

Water molecule: 0.3 nm

Nanoscience is the study of structures and materials 

on the scale of nanometers.



Natural nanosystems

Shale plays

Applications & our interest

Nanoscale research needs 

• Sophisticated measuring devices

• Deep understanding of fundamental physics. 
Different from continuum physics



Permeability

Recoverable gas & oil

Porosity

Gas & oil in place

$ value of a reservoir

Applications in shale plays



US Energy Information Administration  (EIA) - 2013 

Could be even 

more!

EIA report 2011 2013

Recoverable shale gas resources (Tcf) 6,622 7,299

Recoverable shale/tight oil (B bbl) 32 345 

Interesting statistics



Shale porosity

Direct methods

(Courtesy Dr. Zhang)

Pores are at nanoscale

(Loucks et al., 

AAPG, 2012)

(Javadpour et al, 

JCPT, 2012)
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Organic material

Gas moleculeNanopore



Total gas stored in shale gas strata

Total gas

storage capacity

Sorbed gas

storage capacity

Free gas

storage capacity

Diffused gas

storage capacity= + +

Geochemistry 
labs

Routine 
reservoir 

engineering 
analysis ?



Diffusion in kerogenic
material
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OM

OM (without pore)
(a)
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(c)

Diffused gas in bulk kerogen
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Conversion of pressure data to mass

DiffusionSorption

Flow  

in pores

Etminan et al., International Journal of  Coal Geology (2014)



Gas flow in nanopores
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Apparent permeability of nanopores
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Pore network model 

Mehmani et al., Transport in Porous Media (2013)
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Stochastic permeability 
model



SEM to permeability

• TOC 

• OM patch SD from SEM images

• Pore SD in OM & iOM from N2 & MICP

OM

iOM



Stochastic model

Naraghi & Javadpour, International Journal of  Coal Geology (2015)
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Darabi et al., Journal of Fluid Mechanics, 2012

Reservoir model
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Model Description Pros Cons

Javadpour
(2009)

Model developed using slip flow assumption, represented by Maxwell theory. Accounts for Knudsen 
diffusion. 

Simple.
Limited to straight tubes. Ideal 
gas. Ignores desorption. 

Civan
(2010)

Model developed using slip flow assumption, represented by simplified second-order slip model. 
Contains several empirical parameters

Higher-order slip flow. Several empirical parameters.

Darabi et al. 
(2012)

Model developed using slip flow assumption, represented by Maxwell theory. Accounts for surface 
roughness and Knudsen diffusion in a porous medium.

Includes tortuosity and pore surface 
roughness.

Needs TMAC values. 
Ideal gas. Ignores desorption.

Akkutlu & Fathi
(2012)

Model includes dual-porosity continua of matrix/fracture system, where matrix is composed of both 
organic and inorganic pores. Accounts for surface diffusion and sorption.

Dual-porosity system. Complex numerical model.

Shabro et al.
(2012)

A finite-difference based numerical model and geometrical parameters are used to reconstruct porous 
structure of shale, which is then used for pore-scale characterization. Permeability equation is 
borrowed from Javadpour (2009).

Spatial characterization and 
geometry of porous media included.

Complex numerical model. 
Ideal gas. Ignores desorption. 
Needs TMAC values.

Sakhaee-Pour & 
Bryant (2012)

Model developed using slip flow assumption, represented by Maxwell theory. Accounts for Knudsen 
diffusion.

Spatial characterization and 
geometry of porous media included. 

Needs TMAC values. 
Ideal gas.

Mehmani et al. 
(2013)

Model developed by employing flow equation from Javadpour (2009) in pore network interconnected 
on nano and micro length scales.

Spatial characterization and 
geometry of porous media included.

Complex numerical model. 
Ideal gas. Ignores desorption. 
Needs TMAC values.

Singh et al.  
(2014)     

Model developed using Navier-Stokes equation and kinetic theory (no slip flow assumption). Accounts 
for Knudsen diffusion, porous medium and sorption.

Simple. No empirical coefficient. Ignores slip flow.

Rezaveisi et al. 
(2014)

Numerical model developed to study components of produced gas with time from nanometer sized 
pores. Relevant physics includes advection, slip flow and Knudsen diffusion.

Distinguishes different gas types. Needs TMAC values.

Kelly et al. 
(2015)

Porous structure of shale is reconstructed using FIB-SEM image stacks and numerical study using LBM 
is performed to study petrophysical properties of shale. Permeability estimation is done using pressure 
driven flow.

Spatial characterization and 
geometry of porous media included.

Complex numerical model. 
Ignores slip, diffusion and 
desorption.

Chen et al. 
(2015)

Porous structure of shale is reconstructed using Markov Chain Monte Carlo (MCMC) on SEM images 
and its pore-scale characterization is performed. Apparent permeability includes flow from advection, 
Knudsen diffusion and slip. LBM is used to simulate fluid flow.

Spatial characterization and 
geometry of porous media included.

Complex numerical model. 
Ignores desorption. Several 
empirical parameters.

Naraghi & 
Javadpour 

(2015)

Model developed by stochastically characterizing organic and inorganic pores. Accounts for slip flow, 
Knudsen diffusion, surface roughness and desorption.

Distinguishes different pore systems 
in organic and inorganic matter. 
Real gases.

Needs additional information 
from SEM images. 
Needs TMAC values.

Singh & 
Javadpour (2015)

Model developed using the Langmuir slip condition and it does not carry several shortcomings 
associated with the use of Maxwell slip. Reliably predict apparent permeability in shale.

Simple and analytic. Gets slip 
coefficient from sorption data. Real 
gas. 

Ignores local heterogeneity.



Model Name Equation
Empirical 
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More reservoir models
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Lost gas estimation from 
canister tests



Gas content from canister tests

• Is the volume of gas released from a reservoir shale sample

• It is used to calculate gas-in-place volume for a reservoir

• Total gas content of a shale sample consists of three components: 

lost gas (Q1)

measured gas (Q2)

residual gas (Q3)
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Canister Gas

• Reservoir temperature

• Lost gas + measured gas + crushed gas

• Adsorbed gas in CBM

• Free + adsorbed gas in shale

Waechter et al. World Oil, 2004



Lost gas estimation
Linear fit vs polynomial 
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PDE, BC and IC

• ¢c ap == 1 aCrvr ) + acvz ) + R 
at r ar az 

• B.C. and I.C. 
~P(r = R,z,t > 0) = J(t) 

~P(r,z = L,t > 0) = J(t) 

~P(r,z = 0, t > 0) = J(t) 

~P(r,z,O) = Pi 



Solution in real domain



Pressure profile



Rigorous estimation of lost gas
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In-situ gas 
chromatographic 

separation (CS) in shale 
reservoirs



Chromatographic separation (CS)

Field observation (Freeman, Moridis, Michael, Blasingame, 2012)

Temporal variation of gas composition in produced gas

Is the observed variation related to an in-situ separation process?

If yes, how we control the composition variation? 
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Property Value

Darcy permeability, Kd (nD) 100
Porosity, ϕ 0.1
L(m) 4
Initial pressure (psi) 5000
Outlet pressure (psi) 1000
Temperature (K) 373
Tortuosity 4
Number of grid blocks (number of 
refined grid blocks near the outlet)

150 (70)

Input data



Spatial P & C profiles (12 days)
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Temporal variation of P and normalized Cn
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Effect of initial P

Rezaveisi et al., 

International Journal of 

Coal Geology (2014)



Effect of matrix size

In a 2D model can be used to determine fracture spacing
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Liquid flow in shale and 
fracture fluid loss



Hydraulic fracturing

After fracking, a portion of 
injected water

 flows back

 remains in fractures & gradually 
flows back

 leaks off into matrix



N
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Modified after Gale et al. (2007)
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R= 10 µm
Uslip = 1.02 U

Liquid slip in a pore 

Negligible in 
conventional reservoirs

Slip must be included 
in shale

R= 10 nm
Uslip = 102 U



•Slip depends on the surface and fluid type

•Slip length for a liquid flowing inside a tube or outside 
an object is the same

•It is easier to measure slip length for a fluid moving 
over an object

•We measure slip length over a spherical object and 
then relate it to liquid flow in pore

How to measure slip length?
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Atomic force Microscopy (AFM)
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scanner
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F=
6π𝑅2µν

ℎ
f*

Slip length from AFM data
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(a) Generate ensemble of OM & 
iOM realizations conditioned to 
OM Patch SD 

(b) Discretize space domain to 
gridblocks smaller than the 
smallest patch size 

(c) Assign pore SD measured by 
N2 sorption, MICP, or NMR 
within OM and iOM

(d) Assign AFM measured slip 
length to pores in OM & iOM 

(e) Solve pressure field to 
calculate ALP or use Eq. (4)
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Impact of slip length & TOC on liquid permeability

Naraghi & Javadpour, 2015, International Journal of Coal Geology.
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Effect of liquid slip on fracturing
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