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Abstract 

 

Flow within the mantle imposes a deformation of the Earth's surface called dynamic topography. However, quantifying this 

topography in space and time remains a challenge. Over the last few years, we have developed dynamic Earth models that 

progressively assimilate cutting-edge tectonic reconstructions with continuously closing plates and plate deformation. These 

models read-in plate velocities and subduction zone location and geometry defined in million-year increments for the last 230 

Myr. The approach allows us to simultaneously model global mantle flow and large-scale lithospheric deformation, and in turn 

estimate the evolution of both dynamic and isostatic topography back to the Jurassic. In the South Atlantic domain, we show that 

long-wavelength topographic features, including the anomalously high elevations of southern Africa and East Brazil, could 

result from whole mantle flow, rather than asthenospheric flow, as previously suggested. Comparing model tectonic subsidence 

along the South American passive margin with that estimated from boreholes, we attribute the post-rift subsidence of the East 

Brazil Rift System since the Eocene to the motion of South America over ancient subducted slabs. This interplay between plate 

motion and mantle flow, combined with the development of flat slab subduction in Peru, also explains the reversal of the 

drainage direction of the Amazon River and the drying of the Pebas System since the Miocene. On a smaller scale, we show that 

deformation within the Central Andes imposes an inboard migration of the subduction zone relative to the South American plate 

that could have resulted in the migration of the depocenter of the Bolivian Chaco foreland basin and associated drainage 
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reorganization. In South East Asia, we use simpler models without lithospheric deformation to attribute missing sedimentary 

sections of latest Cretaceous to Paleocene age across Sundaland to dynamic uplift resulting from a ~10 Myr subduction hiatus 

along the Sunda active margin. In the Arctic, we show that subduction-driven dynamic topography can explain the rapid Middle 

to Late Jurassic subsidence of the Slave Craton and North Slope of Alaska and the vertical motions of the Barents Sea region, 

characterized by subsidence between ~170–50 Ma followed by uplift since 50 Ma. Together, these results illustrate the 

important role of mantle flow on the evolution of large-scale topography, making dynamic Earth models powerful for frontier 

hydrocarbon exploration. 
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scale processes on 
basin evolution 



Isostatic (“tectonic”) and dynamic topography 
• Most of the topography at the Earth’s 
 surface is isostatically compensated 
• This topography is related to the 

thickness of the continental crust and  
lithosphere 

Burgess et al. (1997) 

Many other processes affect topography, 
including: 

• Thermal diffusion that affects the 
thickness of the lithosphere 

• Mantle flow 
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CitcomS 
• 3D spherical finite 

element mantle 
convection code 

• Modified for data 
assimilation 

GPlates 
Global reconstructions back 
to 230 Ma with 
continuously closing plate 
polygons (velocities; plate 
boundaries) 

13 x 106 points 
~ 40,000 CPU hours/model 
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Evolution of global dynamic topography 

Dynamic topography  
• at the surface,  
• from flow deeper 

than 350 km;  
• free-slip boundary 

condition 
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Dynamic topography  
• at the surface,  
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South American 
subduction 

history 

• Andean deformation 
   (Arriagada et al., 2008) 

 

• Flat-slab subduction 
(e.g. Ramos & Folguera, 2009) 

Flament et al. (2015) 
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Predicted South 
American dynamic 
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Flament et al. (EPSL, 2015) 
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Predicted and “observed” Miocene South American flooding 

- Simple model 
paleogeography: 

• long-term sea level 
change (Haq et al., 1987) 

• changes in dynamic 
topography 
 

- Paleoshorelines (Smith et al., 

2004; Golonka, 2009; Wesselingh et al., 
2010) 

 

 Both sea level change and 
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Modelling isostatic and dynamic topography 

Same thickness for the chemical 
and thermal lithospheres  

(isopycnic condition: Jordan, 1978) 

Continents are initially 
isostatically flat 

Flament 
et al. 

(2014) 



Reconstruction with deformation 

Flament et al. (2014) 



Evolution of South American total model elevation 

Flament et al. (2014) 
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Predicted and “observed” tectonic subsidence 

Chang  
et al. 

 (1992) 
 
 
 
 
 
 

Jones  
et al. 

 (2004) 

Bahia Sul 

Espirito 

Santos  

Falkland  

Flament 
 et al. (2014) 

• Rift dynamics captured to 
first order: rift phase 
followed by thermal 
subsidence: essentially 
the model of McKenzie 
(1978) in 3D, time-
dependent 

 
• Accelerated tectonic 

subsidence since ~50 Ma 
corresponds to predicted 
dynamic subsidence 



Light blue = Upper mantleslabs

Dark blue = Lower mantle slabs

• Dynamic 
topography          
of SE Asia

• A complex, 
deforming     
region   
profoundly 
affected by 
subduction 
through time

 
Presenter’s notes: Geodynamic simulation---We can then use these plate velocities to drive mantle convection in a global spherical 
mantle shell, allowing slabs to sink and interact in a more realistic manner. This allows us to track subducted material through time 
and then account for it at present day – as well as test alternative tectonic scenarios when the surface geology is vague. The first key 
here is the colours. Red represents upwelling hot mantle, and blue represents sinking slab material. Notice that New Guinea and SE 
Asia are overriding this ‘slab burial ground’, resulting in strong dynamic subsidence and flooding of these regions since ~30 Ma.   



Late Cretaceous to Eocene Sundaland unconformity 

Flooded: ~17% 

• Missing sedimentary 
sections across wide 
region Late K to 
Eocene  

• Regional 
unconformity  

• Unlikely to be from 
“tectonic” topography 
or from flexure alone 



Regional 
unconformity, 
Clements et al. 
(2011)

 

Presenter’s notes: Sundaland Case Study---Presented here is a case study of Sundaland emergence and subsequent flooding, which 
we argue is controlled largely by dynamic topography, which is topographic responses to mantle convection.  
There is an enigmatic Late Cretaceous to Paleocene regional unconformity, and Clements et al. (2011) proposed that the accreted 
Gondwana fragments may have choked a subduction zone, resulting in dynamic uplift due to the absence of subduction. The 
emergence and flooding pattern is also supported by paleogeography.   



Geodynamic model of dynamic topography

 
Presenter’s notes: Dynamic Topography: We can then interrogate the geodynamic model, both vertical slices through the mantle, but 
also the surface dynamic topography. Here is a slice across Sumatra, showing the sinking slab material.  
 
 
 

  



Dynamic topography and flooding/emergence

 
Presenter’s notes: Results---What we find is that the eustatic sea level trends are anti-correlated to the flooding since ~30 Ma, where 
the falling sea level curve would suggest a tendency toward emergence. Instead, the pattern of emergence, resulting from a hiatus in 
subduction, and subsequent flooding since ~30 Ma from re-established subduction, suggests that dynamic topography had a dominant 
control on the flooding of Sundaland. We need to look at New Guinea in this context as well, as it seems it could provide the 
mechanism for widespread contemporaneous flooding and carbonate deposition since ~30 Ma (Oligocene times).  



Conclusions 

• Ability to jointly investigate mantle flow and crustal 
deformation over 100’s and 1000’s of km and 10’s of Myr 

• Direct comparison between predicted and observed 
tectonic subsidence/uplift 

• Exploration Geodynamics:  An emerging exploration tool 
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