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Abstract

Induced seismicity related to unconventional oil and gas production has drawn much attention in recent years in the central and
eastern United States, Arkansas, Kansas, Ohio, Oklahoma, and Texas, in particular. For example, the 2011 M 5.7 Prague, Okla.,
earthquake resulted in more than $10 million in insured losses. However, assessing the seismic hazard from induced seismicity
IS not an easy task because of large inherent uncertainties in location, magnitude, and recurrence interval of earthquakes, as well
as ground-motion attenuation. Thus, how to quantify and communicate the inherent uncertainty is critical for assessing seismic
hazard from induced seismicity.

Seismic hazards include primary ones that are directly generated by an earthquake (fault rupture): surface rupture and ground
motion (shaking); and secondary ones that could be caused by strong ground motion under certain site conditions: amplification,
liquefaction, and landslides. Surface rupture occurs in the vicinity of the fault rupture, whereas ground motion can propagate far
away from the fault, affecting a much larger area. Secondary hazards are concentrated at locations with certain site conditions
under the influence of strong ground motion. No surface rupture has been found to be associated with induced earthquakes in the
central and eastern United States. Also, amplification, liquefaction, and landslides are not major concerns because the
magnitudes of induced earthquakes are less than M 6.0. Thus, ground-motion hazard is the main concern from induced
earthquakes.


mailto:zhenming.wang@uky.edu

Probabilistic seismic hazard analysis has been used to assess ground-motion hazard from induced earthquakes. However, PSHA
is scientifically invalid because it contains a mathematical error: equating the annual probability of exceedance (i.e., the
probability of exceedance in 1 year and a dimensionless quantity) with a frequency or rate of exceedance (i.e., the annual
frequency of exceedance and a dimensional quantity with the unit of 1/year). Thus, PSHA should not be used for ground-motion
hazard assessment from induced earthquakes. We propose using a scenario-based seismic hazard analysis to assess ground-
motion hazard from induced earthquakes.
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Induced-Seismicity in CEUS
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Induced-Seismicity in CEUS

Cumulative number of earthquakes
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Induced-Seismicity in CEUS

Cumulative number of earthquakes
Mz3

Felt-cases of probable and unambiguous injection-
induced-seismicity reported in the literature:
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Induced Seismic Hazards

(Landslide)

Magnitudes <=M 6.0
(Petersen and others, 2016) 000
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Ground-motion hazard is the main concern from induced earthquakes



Induced Ground Motion Hazards

2011 Prague, Oklahoma, earthquake (M 5.7)

Deanne Stein, News 9

SHAWNEE, Oklahoma -- St. Gregory's University in
Shawnee sustained heavy damage when the 5.6
magnitude earthquake struck. The damage was
done at Benedictine Hall, the centerpiece of the
campus.

WWW.newson6.com/story/15972590/earthquake-

http://www.usgs.gov/blogs/features/usgs_top_story/man-
made-earthquakes/
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Induced Ground Motion Hazards

2016 Pawnee, Oklahoma, earthquake (M 5.8)
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Ground Motion Hazard Assessment

e Probabilistic Seismic Hazard Analysis (PSHA)
— Emphasizing the statistical properties of ground motion

— Expressing in terms of probability of ground motion occurrence
— USGS

e Scenario-based (Deterministic) Seismic Hazard Analysis
(SSHA)
— Emphasizing the physical properties of ground motion

— Expressing in terms of ground motion with a specific level of
uncertainty (i.e., mean or median)

— KGS
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Figure 2. The steps in perfonning a PSIIA,

PSHA

- Uncertainty in space (probability model)

- Uncertainty in earthquake size
(probability model)

- Uncertainty in ground motion
(probability model)

- Probability that ground motion exceeds
a given level in one year



Sources Within Zones of Induced Seismicity
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A Intensity based on peak ground acceleration with 1-percent probability of exceedance in 1 year
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C Chance of damage based on peak ground acceleration
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Problems with PSHA
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Figure 2. The siops in performing a PBHA,

The probability models are:
(1) “highly variable spatially and temporally;

(2) dependent on human economic or societal decisions
regarding when to initiate or terminate wastewater
disposal and how much fluid (volume) would be
Injected or extracted,;

(3) dependent on the length and depth extent of the
causative faults, which are generally unknown”

“The final model (result - probability) has high
uncertainty, and engineers, regulators, and
Industry should use these assessments
cautiously to make informed decisions on
mitigating the potential effects of induced and
natural earthquakes™ (Petersen and others,
2016). — uncertainty of uncertainty
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Parameter 11/6/2011 Prague, OK
Moment magnitude (Mw) 5.7

Fault orientation (strike) 60°

Fault orientation (dip) 85°

Fault depth to upper edge (H) 1 km

Fault dimension 10km(L)*7km(W)
Subfault length and width 1km

Style of fault and rake strike-slip

Input hypo at subfault epicenter

Fast Fourier transform

Dynamic allocation of points

Sample interval

0.02s

Shear-wave velocity

3.8 km/s

Density

2,700 kg/m3

Rupture velocity

0.8*shear-wave velocity

® EQs between A-B
e EQs between B-C

I- Regional faults

Qil fields
W'/ Disposal wells

® EQs between C-C+1hr B |njtial 3 stations

M Oither stations

K 0.005(Atkinson and Boore,2014)
Q) 525f045(Atkinson and Boore,2014)
Stress drop 16bars

Geometric attenuation IfR<30,R-1;0rR-05
Distance-dependent duration To+0.1R(s)

Site amplification function Not applied

Slip model

Random & Gaussian distribution

Dynamic flag and pulsing (%)

1 and 50

Damping

5% critical damping




The 2011 Mw 5.7 Oklahoma earth
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The 2016 Mw 5.8 Oklahoma earthquake

The 2011 Mw 5.7 Oklahoma earthquake
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Presenter’s notes: It is important to perform a high-resolution study of microseismicity in eastern Kentucky because of the interest in
developing deep shale-gas plays and because the effects of disposal of wastewater in deep injection wells in the heavily faulted Rome
Trough of Kentucky are largely unknown. In addition, this part of eastern Kentucky is known to have moderate natural earthquakes,
such as the 1980 magnitude-5.2 Sharpsburg earthquake.
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Summary

Ground motion hazards from induced earthquakes are of
safety concern in the central and eastern US

Assessing ground motion hazards is difficult because of the lack
of understanding on the sources, ground motions, as well as
human influence.

PSHA is not appropriate for assessing ground motion hazards
from induced earthquakes

— Uncertainty of uncertainty
— Difficult to understand and use

SSHA is viable approach for assessing ground motion hazards
from induced earthquakes

— Ground motion with a level of uncertainty
— Easy to understand and use



LILWELLE
zmwang@uky.edu

www.uky.edu/kgs

Ei?@ Kentucky
Geological Survey
%



www.uky.edu/kgs



